10 research outputs found
Single particle detection of protein molecules using dark-field microscopy to avoid signals from nonspecific adsorption
A massively parallel single particle sensing method based on core-satellite formation of Au nanoparticles was introduced for the detection of interleukin 6 (IL-6). This method exploits the fact that the localized plasmon resonance (LSPR) of the plasmonic nanoparticles will change as a result of core-satellite formation, resulting in a change in the observed color. In this method, the hue (color) value of thousands of 67 nm Au nanoparticles immobilized on a glass coverslip surface is analyzed by a Matlab code before and after the addition of reporter nanoparticles containing IL-6 as target protein. The average hue shift as the result of core-satellite formation is used as the basis to detect small amount of proteins. This method enjoys two major advantages. First it is able to analyze the hue values of thousands of nanoparticles in parallel in less than a minute. Secondly the method is able to circumvent the effect of non-specific adsorption, a major issue in the field of biosensing
Skin color-specific and spectrally-selective naked-eye dosimetry of UVA, B and C radiations
Spectrally–selective monitoring of ultraviolet radiations (UVR) is of paramount importance across diverse fields, including effective monitoring of excessive solar exposure. Current UV sensors cannot differentiate between UVA, B, and C, each of which has a remarkably different impact on human health. Here we show spectrally selective colorimetric monitoring of UVR by developing a photoelectrochromic ink that consists of a multi-redox polyoxometalate and an e− donor. We combine this ink with simple components such as filter paper and transparency sheets to fabricate low-cost sensors that provide naked-eye monitoring of UVR, even at low doses typically encountered during solar exposure. Importantly, the diverse UV tolerance of different skin colors demands personalized sensors. In this spirit, we demonstrate the customized design of robust real-time solar UV dosimeters to meet the specific need of different skin phototypes. These spectrally–selective UV sensors offer remarkable potential in managing the impact of UVR in our day-to-day life
Immunological mechanism of action and clinical profile of disease-modifying treatments in multiple sclerosis.
Multiple sclerosis (MS) is a life-long, potentially debilitating disease of the central nervous system (CNS). MS is considered to be an immune-mediated disease, and the presence of autoreactive peripheral lymphocytes in CNS compartments is believed to be critical in the process of demyelination and tissue damage in MS. Although MS is not currently a curable disease, several disease-modifying therapies (DMTs) are now available, or are in development. These DMTs are all thought to primarily suppress autoimmune activity within the CNS. Each therapy has its own mechanism of action (MoA) and, as a consequence, each has a different efficacy and safety profile. Neurologists can now select therapies on a more individual, patient-tailored basis, with the aim of maximizing potential for long-term efficacy without interruptions in treatment. The MoA and clinical profile of MS therapies are important considerations when making that choice or when switching therapies due to suboptimal disease response. This article therefore reviews the known and putative immunological MoAs alongside a summary of the clinical profile of therapies approved for relapsing forms of MS, and those in late-stage development, based on published data from pivotal randomized, controlled trials
A graphene-based sensor for real time monitoring of sun exposure
The photoreduction of graphene oxide (GO) with titanium dioxide (TiO2) was exploited to fabricate a UV sensor for real time monitoring of sun exposure. The sensor was fabricated by simultaneous deposition of GO sheets and TiO2 nanoparticles onto interdigitated electrodes using an AC electrophoresis deposition method. Changes in the resistance of the GO sheets decorated with TiO2 nanoparticles during repeated cycles of exposure to UV were measured to understand the sensitivity of this sensor to UV radiation. Current-time traces revealed that the fabricated UV sensor retains a memory of each cycle of UV exposure; regardless of whether the sensor is exposed to UV for one long cycle or several short cycles. This memory of the extent of UV exposure is a biomimetic approach, analogous to the response of the skin to sun, and means the sensor requires no power except when the data is read from the sensor
Understanding the performance of a paper-based UV exposure sensor: The photodegradation mechanism of brilliant blue FCF in the presence of TiO<inf>2</inf> photocatalysts in both the solid state and solution
Rationale: The decolouration of brilliant blue FCF by the action of titanium dioxide (TiO2) under ultraviolet (UV) exposure has been recently reported as the basis of a paper-based sensor for monitoring UV sun exposure. The mechanism of brilliant blue FCF photodegradation in the presence of the photocatalyst and the resulting photoproducts are thus far unknown. Methods: The UV-initiated photodegradation of brilliant blue FCF in the presence of TiO2 for both the aqueous and the solid state was investigated. Degradation in the solid state was observed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-MS). Decomposition of the dye in the aqueous state was analyzed using liquid chromatography/mass spectrometry (LC/MS) and ultraviolet–visible (UV–Vis) spectroscopy. Results: After UV radiation exposure, the brilliant blue FCF base peak [M1 + NH4]+ (m/z calc. 766.194 found 766.194) decreased in the LC/MS chromatogram with a concomitant appearance of BB-FCF decomposition products involving the sequential loss of the N-ethyl and N-methylbenzene sulfonate (MBSA) groups, assigned as [M2 + H]+ (-MBSA, calc. 579.163 found 579.162), [M3 + H]+ (-MBSA, −Et, calc. 551.131 found 551.131), [M4 + H]+ (-2MBSA, calc. 409.158 found 409.158), [M5 + H]+ (-2MBSA, −Et, calc. 381.127 found 381.127). Ions [M2 + H]+ and [M3 + H]+ were also identified in the photodegradation products using MALDI-MS. Observation by UV–Vis indicated a decrease in the solution absorbance maxima and an associated blue-shift upon UV exposure in solution. Conclusions: The LC/MS analysis indicated two main oxidation processes. The most obvious was attack of the N-methylene, eliminating either ethyl or MBSA groups. The presence of the hydroxylated decomposition product M13 ([M13 + H]+, calc. 595.157 found 595.157) supported this assignment. In addition, the detection of photoproduct M8, proposed to be 3-((ethylamino)methyl)benzenesulfonic acid ([M8 + H]+, calc. 216.069 found 216.069), indicates an aryl-oxidative elimination. The absence of the aryl-hydroxy products normally expected to accompany the formation of M8 is proposed to be due to TiO2-binding catechol-like derivatives, which are then removed upon filtration