97 research outputs found
A systematic review evaluating the psychometric properties of measures of social inclusion
Introduction: Improving social inclusion opportunities for population health has been identified as a priority area for international policy. There is a need to comprehensively examine and evaluate the quality of psychometric properties of measures of social inclusion that are used to guide social policy and outcomes. Objective: To conduct a systematic review of the literature on all current measures of social inclusion for any population group, to evaluate the quality of the psychometric properties of identified measures, and to evaluate if they capture the construct of social inclusion. Methods: A systematic search was performed using five electronic databases: CINAHL, PsycINFO, Embase, ERIC and Pubmed and grey literature were sourced to identify measures of social inclusion. The psychometric properties of the social inclusion measures were evaluated against the COSMIN taxonomy of measurement properties using pre-set psychometric criteria. Results: Of the 109 measures identified, twenty-five measures, involving twenty-five studies and one manual met the inclusion criteria. The overall quality of the reviewed measures was variable, with the Social and Community Opportunities Profile-Short, Social Connectedness Scale and the Social Inclusion Scale demonstrating the strongest evidence for sound psychometric quality. The most common domain included in the measures was connectedness (21), followed by participation (19); the domain of citizenship was covered by the least number of measures (10). No single instrument measured all aspects within the three domains of social inclusion. Of the measures with sound psychometric evidence, the Social and Community Opportunities Profile-Short captured the construct of social inclusion best. Conclusions: The overall quality of the psychometric properties demonstrate that the current suite of available instruments for the measurement of social inclusion are promising but need further refinement. There is a need for a universal working definition of social inclusion as an overarching construct for ongoing research in the area of the psychometric properties of social inclusion instruments
Meiosis in Mice without a Synaptonemal Complex
The synaptonemal complex (SC) promotes fusion of the homologous chromosomes (synapsis) and crossover recombination events during meiosis. The SC displays an extensive structural conservation between species; however, a few organisms lack SC and execute meiotic process in a SC-independent manner. To clarify the SC function in mammals, we have generated a mutant mouse strain (Sycp1−/−Sycp3−/−, here called SC-null) in which all known SC proteins have been displaced from meiotic chromosomes. While transmission electron microscopy failed to identify any remnants of the SC in SC-null spermatocytes, neither formation of the cohesion axes nor attachment of the chromosomes to the nuclear membrane was perturbed. Furthermore, the meiotic chromosomes in SC-null meiocytes achieved pre-synaptic pairing, underwent early homologous recombination events and sustained a residual crossover formation. In contrast, in SC-null meiocytes synapsis and MLH1-MLH3-dependent crossovers maturation were abolished, whereas the structural integrity of chromosomes was drastically impaired. The variable consequences that SC inactivation has on the meiotic process in different organisms, together with the absence of SC in some unrelated species, imply that the SC could have originated independently in different taxonomic groups
Gene expression signatures of morphologically normal breast tissue identify basal-like tumors
INTRODUCTION: The role of the cellular microenvironment in breast tumorigenesis has become an important research area. However, little is known about gene expression in histologically normal tissue adjacent to breast tumor, if this is influenced by the tumor, and how this compares with non-tumor-bearing breast tissue. METHODS: To address this, we have generated gene expression profiles of morphologically normal epithelial and stromal tissue, isolated using laser capture microdissection, from patients with breast cancer or undergoing breast reduction mammoplasty (n = 44). RESULTS: Based on this data, we determined that morphologically normal epithelium and stroma exhibited distinct expression profiles, but molecular signatures that distinguished breast reduction tissue from tumor-adjacent normal tissue were absent. Stroma isolated from morphologically normal ducts adjacent to tumor tissue contained two distinct expression profiles that correlated with stromal cellularity, and shared similarities with soft tissue tumors with favorable outcome. Adjacent normal epithelium and stroma from breast cancer patients showed no significant association between expression profiles and standard clinical characteristics, but did cluster ER/PR/HER2-negative breast cancers with basal-like subtype expression profiles with poor prognosis. CONCLUSION: Our data reveal that morphologically normal tissue adjacent to breast carcinomas has not undergone significant gene expression changes when compared to breast reduction tissue, and provide an important gene expression dataset for comparative studies of tumor expression profiles
Finding the missing honey bee genes: lessons learned from a genome upgrade
BACKGROUND:
The first generation of genome sequence assemblies and annotations have had a significant impact upon our understanding of the biology of the sequenced species, the phylogenetic relationships among species, the study of populations within and across species, and have informed the biology of humans. As only a few Metazoan genomes are approaching finished quality (human, mouse, fly and worm), there is room for improvement of most genome assemblies. The honey bee (Apis mellifera) genome, published in 2006, was noted for its bimodal GC content distribution that affected the quality of the assembly in some regions and for fewer genes in the initial gene set (OGSv1.0) compared to what would be expected based on other sequenced insect genomes.
RESULTS:
Here, we report an improved honey bee genome assembly (Amel_4.5) with a new gene annotation set (OGSv3.2), and show that the honey bee genome contains a number of genes similar to that of other insect genomes, contrary to what was suggested in OGSv1.0. The new genome assembly is more contiguous and complete and the new gene set includes ~5000 more protein-coding genes, 50% more than previously reported. About 1/6 of the additional genes were due to improvements to the assembly, and the remaining were inferred based on new RNAseq and protein data.
CONCLUSIONS:
Lessons learned from this genome upgrade have important implications for future genome sequencing projects. Furthermore, the improvements significantly enhance genomic resources for the honey bee, a key model for social behavior and essential to global ecology through pollination.Funding for the project was provided by a grant to RG from the National
Human Genome Research Institute, National Institutes of Health (NHGRI, NIH)
U54 HG003273. Contributions from members of the CGE lab were supported
by Agriculture and Food Research Initiative Competitive grant no. 2010-
65205-20407 from the USDA National Institute of Food Agriculture. AKB was
supported by a Clare Luce Booth Fellowship at Georgetown University
Holding it together: rapid evolution and positive selection in the synaptonemal complex of Drosophila
Background
The synaptonemal complex (SC) is a highly conserved meiotic structure that functions to pair homologs and facilitate meiotic recombination in most eukaryotes. Five Drosophila SC proteins have been identified and localized within the complex: C(3)G, C(2)M, CONA, ORD, and the newly identified Corolla. The SC is required for meiotic recombination in Drosophila and absence of these proteins leads to reduced crossing over and chromosomal nondisjunction. Despite the conserved nature of the SC and the key role that these five proteins have in meiosis in D. melanogaster, they display little apparent sequence conservation outside the genus. To identify factors that explain this lack of apparent conservation, we performed a molecular evolutionary analysis of these genes across the Drosophila genus.
Results
For the five SC components, gene sequence similarity declines rapidly with increasing phylogenetic distance and only ORD and C(2)M are identifiable outside of the Drosophila genus. SC gene sequences have a higher dN/dS (ω) rate ratio than the genome wide average and this can in part be explained by the action of positive selection in almost every SC component. Across the genus, there is significant variation in ω for each protein. It further appears that ω estimates for the five SC components are in accordance with their physical position within the SC. Components interacting with chromatin evolve slowest and components comprising the central elements evolve the most rapidly. Finally, using population genetic approaches, we demonstrate that positive selection on SC components is ongoing.
Conclusions
SC components within Drosophila show little apparent sequence homology to those identified in other model organisms due to their rapid evolution. We propose that the Drosophila SC is evolving rapidly due to two combined effects. First, we propose that a high rate of evolution can be partly explained by low purifying selection on protein components whose function is to simply hold chromosomes together. We also propose that positive selection in the SC is driven by its sex-specificity combined with its role in facilitating both recombination and centromere clustering in the face of recurrent bouts of drive in female meiosis
Present state and future perspectives of using pluripotent stem cells in toxicology research
The use of novel drugs and chemicals requires reliable data on their potential toxic effects on humans. Current test systems are mainly based on animals or in vitro–cultured animal-derived cells and do not or not sufficiently mirror the situation in humans. Therefore, in vitro models based on human pluripotent stem cells (hPSCs) have become an attractive alternative. The article summarizes the characteristics of pluripotent stem cells, including embryonic carcinoma and embryonic germ cells, and discusses the potential of pluripotent stem cells for safety pharmacology and toxicology. Special attention is directed to the potential application of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) for the assessment of developmental toxicology as well as cardio- and hepatotoxicology. With respect to embryotoxicology, recent achievements of the embryonic stem cell test (EST) are described and current limitations as well as prospects of embryotoxicity studies using pluripotent stem cells are discussed. Furthermore, recent efforts to establish hPSC-based cell models for testing cardio- and hepatotoxicity are presented. In this context, methods for differentiation and selection of cardiac and hepatic cells from hPSCs are summarized, requirements and implications with respect to the use of these cells in safety pharmacology and toxicology are presented, and future challenges and perspectives of using hPSCs are discussed
- …