84 research outputs found

    Modelling of the Total Electronic Content and magnetic field anomalies generated by the 2011 Tohoku-oki tsunami and associated acoustic-gravity waves,

    Get PDF
    International audienceIn this work, numerical simulations of the atmospheric and ionospheric anomalies are performed for the Tohoku-Oki tsunami (2011 March 11). The Tsunami-Atmosphere-Ionosphere (TAI) coupling mechanism via acoustic gravity waves (AGWs) is explored theoretically using the TAI-coupled model. For the modelled tsunami wave as an input, the coupled model simulates the wind, density and temperature disturbances or anomalies in the atmosphere and electron density/magnetic anomalies in the F region of the ionosphere. Also presented are the GPS-total electron content (TEC) and ground-based magnetometer measurements during the first hour of tsunami and good agreements are found between modelled and observed anomalies. At first, within 6 min from the tsunami origin, the simulated wind anomaly at 250 km altitude and TEC anomaly appear as the dipole-shaped disturbances around the epicentre, then as the concentric circular wave fronts radially moving away from the epicentre with the horizontal velocity ∼800 m s−1 after 12 min followed by the slow moving (horizontal velocity ∼250 m s−1) wave disturbance after 30 min. The detailed vertical-horizontal propagation characteristics suggest that the anomalies appear before and after 30 min are associated with the acoustic and gravity waves, respectively. Similar propagation characteristics are found from the GPS-TEC and magnetic measurements presented here and also reported from recent studies. The modelled magnetic anomaly in the F region ionosphere is found to have similar temporal variations with respect to the epicentre distance as that of the magnetic anomaly registered from the ground-based magnetometers. The high-frequency component ∼10 min of the simulated wind, TEC and magnetic anomalies in the F region develops within 6-7 min after the initiation of the tsunami, suggesting the importance of monitoring the high-frequency atmospheric/ionospheric anomalies for the early warning. These anomalies are found to maximize across the epicentre in the direction opposite to the tsunami propagation suggesting that the large atmospheric/ionospheric disturbances are excited in the region where tsunami does not travel

    Low-latitude Scintillation weakening during sudden stratospheric warming events

    Get PDF
    Global Positioning System (GPS) L1-frequency (1.575 GHz) amplitude scintillations at São José dos Campos (23.1°S, 45.8°W, dip latitude 17.3°S), located under the southern crest of the equatorial ionization anomaly, are analyzed during the Northern Hemisphere winter sudden stratospheric warming (SSW) events of 2001/2002, 2002/2003, and 2012/2013. The events occurred during a period when moderate to strong scintillations are normally observed in the Brazilian longitude sector. The selected SSW events were of moderate and major categories and under low Kp conditions. The most important result of the current study is the long-lasting (many weeks) weakening of scintillation amplitudes at this low-latitude station, compared to their pre-SSW periods. Ionosonde-derived evening vertical plasma drifts and meridional neutral wind effects inferred from total electron content measurements are consistent with the observed weakening of GPS scintillations during these SSW events. This work provides strong evidence of SSW effects on ionospheric scintillations and the potential consequences of such SSW events on Global Navigation Satellite System-based applications

    Imaging and modeling the ionospheric airglow response over Hawaii to the tsunami generated by the Tohoku earthquake of 11 March 2011

    Get PDF
    Although only centimeters in amplitude over the open ocean, tsunamis can generate appreciable wave amplitudes in the upper atmosphere, including the naturally occurring chemiluminescent airglow layers, due to the exponential decrease in density with altitude. Here, we present the first observation of the airglow tsunami signature, resulting from the 11 March 2011 Tohoku earthquake off the eastern coast of Japan. These images are taken using a wide-angle camera system located at the top of the Haleakala Volcano on Maui, Hawaii. They are correlated with GPS measurements of the total electron content from Hawaii GPS stations and the Jason-1 satellite. We find waves propagating in the airglow layer from the direction of the earthquake epicenter with a velocity that matches that of the ocean tsunami. The first ionospheric signature precedes the modeled ocean tsunami generated by the main shock by approximately one hour. These results demonstrate the utility of monitoring the Earth's airglow layers for tsunami detection and early warning

    Equatorial Ionosphere Bottom-type Spread-F Observed by OI 630.0 nm Airglow Imaging

    Get PDF
    Bottom‐type spread F events were observed in the south American equatorial region by a VHF coherent radar and an ionosonde at São Luís (2.5°S, 44.3°W), an ionosonde at Fortaleza (3.9°S, 38.4° W) and an airglow OI 630.0 nm imager at Cariri (7.4°S, 36.5°W) and Brasilia (14.8°S, 47.6°W). In the evening of September 30, 2005, a long duration (∼70 minutes) bottom side scattering layer, confined in a narrow height region, was observed. At the same time all‐sky imager observed sinusoidal intensity depletions in the zonal plane extending more than 1500 km and elongated along the magnetic meridian. No strong spread F structures developed during the period. Subsequently well developed plasma bubbles were observed. This suggests that the observed bottom‐type spread F is an initial phase of the plasma bubbles. We report, for the first time, longitudinal and latitudinal extension of the bottom‐type spread F as diagnosed by optical imagers. Citation: Takahashi, H., et al. (2010), Equatorial ionosphere bottom‐type spread F observed by OI 630.0 nm airglow imaging
    corecore