153 research outputs found

    Biodiversité et approche bioécologique de la faune des Monts des Traras Occidentaux (Nord-Ouest Algérien)

    Get PDF
    La région des Traras Occidentaux, important massif du littoral Oranais (Nord-Ouest Algérien), offre des conditions assez particulièrement favorables pour le développement d’une faune diversifiée. Elle se caractérise par un bioclimat semi-aride. Notre objectif de cette étude est de faire un inventaire faunistique au niveau de trois stations différentes de point de vue cortège floristique (Tamarchalet, Tarasmouth, El Mahsar). Les échantillonnages sont effectués du mars 2009 à décembre 2009, soit 18 prélèvements. L’analyse de la faune a révélé l’existence de 120 espèces. L’entomofaune est diversifiée (10 ordres systématiques), elle contient 77 espèces. Les Gastéropodes et les Oiseaux sont représentés par 10 espèces pour chacun. Ensuite viennent les Arachnides (8 espèces), les Mammifères (6 espèces). Les Crustacés et les Amphibiens viennent en dernier rang avec 2 espèces pour les premiers et 1 espèce pour les seconds. Une étude analytique avec la répartition des groupes faunistiques selon la saison, le mois et la strate est définie.Mots-clés : traras occidentaux, nord-ouest Algérien, faune, biodiversité.Biodiversity and bioecological approach fauna of the Traras mounts west (North Western Algerian). The Western Region Traras, important coastal massif Oran (North West Algeria), offers particularly favorable conditions enough for the development of a variety of wildlife. It is characterized by a semi-arid bioclimate. Our objective of this study is to make an inventory of fauna at three different stations of floristic point of view (Tamarchalet, Tarasmouth El Mahsar). Sampling is conducted from March 2009 to December 2009, 18 specimens. The analysis of the fauna revealed 120 species. The insect fauna is diverse (10 systematic orders), it contains 77 species. Gastropods and birds are represented by 10 species each. Then come the Arachnida (8 species), mammals (6 species). Crustaceans and amphibians come in last place with 2 species and 1 for the first case to the second. An analytical study with the distribution of faunal groups according to the season, month and stratum is defined.Keywords : traras west, north western Algerian, fauna, biodiversity

    Morphological and physicochemical properties of dip-coated poly {(2,5-diyl pyrrole) [4-nitrobenzylidène]} (PPNB) thin films: towards photovoltaic applications

    Get PDF
    A new material: conjugated poly {(2,5-diyl pyrrole) [4-nitrobenzylidène]}, that we called (PPNB), has been synthesized and characterized. The cyclic voltammetry has been used in order to estimate first oxidation (Ep) and reduction (En) potentials of our polymer. These values have been assigned, respectively, to the position of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) and determination of the energy band gap which have been estimated to be 6.16, 3.89 and 2.27 eV respectively. Energy levels values of the HOMO and LUMO of the PPNB polymeric donor material were evaluated and the results are compatible with an electron transfer to C60 within an eventual junction, such values show that PPNB could be probed for applications in organic solar cells as donor material. PPNB Thin films have been deposited by dip-coating technique from Dichloromethane solvent with different polymer concentrations, and a dipping speed of 3.0 cm/min. For morphological characterization of the films scanning electron microscopy (SEM) was carried out. The samples, when observed by SEM, reveals that the films deposited are less dense, uniform. Cross-sectional SEM micrographs PPNB films show that thickness of the layers is homogeneous and has value of 35–40 nm. Optical characteristics of the polymer thin films were studied using UV-vis spectroscopy; absorption of wide range of wavelengths from 350 to 700 nm was observed. The optical band gap energy ranges between 1.9 eV and 1.94 eV. Based on these analyzes we realized heterojunction organic solar cells with the structure: ITO/Au/PPNB/C60/BCP/Al, the cells had a photovoltaique effect after J-V measuring, however the efficiency of photo generation under AM1.5 illumination was weak (about 0.02%) and needs to be improved

    Cu-Ag bi-layer films in dielectric/metal/dielectric transparent electrodes as ITO free electrode in organic photovoltaic devices

    Get PDF
    Among ITO alternative, dielectric/metal/dielectric multilayer structures are one of the most often studied possible substituent. However, if their optical and electrical properties are systematically investigated it is not the same with regard to their mechanical properties. In the present manuscript we have studied the properties of ZnS/Cu/Ag/ZnS, ZnS/Cu/Ag/MO3 (with M ¼ Mo or W) structures. With a maximum transmission of 90% and a sheet resistance of 5 U/sq the optimum structure exhibits a figure of merit of 82 10-3 Ω-1 when l = 600 nm. Beyond these standard measures we proceeded to the study of the mechanical properties of the multilayer structures. The inner and outer bending tests show that the ZnS/ Cu/Ag/ZnS (or MO3) structures are more flexible than ITO, while their responses to scotch tests show that they exhibit a large adhesion to the substrate, glass or plastic. The scratching adhesion test puts in evidence that the adhesion to the substrate of the Ag layer is smaller than that of ZnS/Cu/Ag/ZnS, which is smaller than that of ITO. On the other hand, this test shows that the ZnS/Cu/Ag/ZnS (no cracks for L = 25 N) is less brittle than ITO (cracks L = 15N). Finally, when used as anode in organic solar cells, the structure ZnS/Cu/Ag/WO3 allows achieving the best efficiency, similar to that obtained with ITO

    Numerical study of turbulent flows around a cubic obstacle blown from a variable geometry jets diffuser

    Get PDF
    This research focuses on utilizing numerical simulation to analyse how modifications in the air jet diffuser shape impact the cooling efficiency of electronic parts. The main aim of this study is to understand the physical and thermal mechanisms involved in the process. The study consists in numerically predicting the physical and thermal field of a cubic-shaped obstacle placed in the centre of a square subjected to a resulting flow field created by a transverse flow and a perpendicularly oriented impacting jet. The computations were done at a Reynolds number of 3 410, analyzing three perpendicular impinging jets with the ratio of impinging and cross flow Reynolds numbers α = Rej /ReH having the values of 0.5, 1, and 1.5. The k–ω SST turbulence model was used in this investigation. The effectiveness of the methodology that was put into action was evaluated by referring to the findings derived from the experiments conducted by Masip and his team. Once the methodology was validated, we studied the effect of changing the geometric shapes of the impinging jet diffusers on the cooling efficiency. Three geometrical shapes of air diffusers were tested (circular, swirling and lobed). We noted that there is a direct correlation between flow morphology and cooling efficiency. The impact of the ratio α was analysed and found to have a significant effect on the cooling efficiency. As this ratio increases, the quantity of heat transfer increases in all three air jet diffuser cases. In relation to the lobed air jet, it was observed that the Nusselt number exhibits greater values when compared to the other air jet diffuser cases. Moreover, it was noted that the lobed air jet diffuser can enhance the heat transfer efficiency for α = 1.5 by more than 16.3 % compared to the circular air jet diffuser

    Pulmonary tumor thrombotic microangiopathy: a systematic review.

    Get PDF
    Pulmonary tumor thrombotic microangiopathy (PTTM) is a fatal disease process in which pulmonary hypertension (PH) develops in the setting of malignancy. The purpose of this study is to present a detailed analysis of cases of PTTM reported in literature in the hopes of achieving more ante-mortem diagnoses. We conducted a systematic review of currently published and available cases of PTTM by searching the term "pulmonary tumor thrombotic microangiopathy" on the Pubmed.gov database. Seventy-nine publications were included consisting of 160 unique cases of PTTM. The most commonly reported malignancy was gastric adenocarcinoma (94 cases, 59%). Cough and dyspnea were reported in 61 (85%) and 102 (94%) cases, respectively. Hypoxemia was reported in 96 cases (95%). Elevation in D-dimer was noted in 36 cases (95%), presence of anemia in 32 cases (84%), and thrombocytopenia in 30 cases (77%). Common findings on chest computed tomography (CT) included ground-glass opacities (GGO) in 28 cases (82%) and nodules in 24 cases (86%). PH on echocardiography was noted in 59 cases (89%) with an average right ventricular systolic pressure of 71 mmHg. Common features of PTTM that are reported across the published literature include presence of dyspnea and cough, hypoxemia, with abnormal CT findings of GGO, nodules, and mediastinal/hilar lymphadenopathy, and PH. PTTM is a universally fatal disease process and this analysis provides a detailed examination of all the available published data that may help clinicians establish an earlier diagnosis of PTTM

    Efficient hole-transporting layer MoO3:CuI deposited by co-evaporation in organic photovoltaic cells

    Get PDF
    In order to improve hole collection at the interface anode/electron donor in organic photovoltaic cells, it is necessary to insert a hole transporting layer. CuI was shown to be a very efficient hole transporting layer. However, its tendency to be quite rough tends to induce leakage currents and it is necessary to use a very slow deposition rate for CuI to avoid such negative effect. Herein, we show that the co-deposition of MoO3 and CuI avoids this difficulty and allows deposition of a homogeneous efficient hole-collecting layer at an acceptable deposition rate. Via an XPS study, we show that blending MoO3:CuI improves the hole collection efficiency through an increase of the gap state density. This increase is due to the formation of Mo5Ăľ following interaction between MoO3 and CuI. Not only does the co-evaporation process allow for decreasing significantly the deposition time of the hole transporting layer, but also it increases the efficiency of the device based on the planar heterojunction, CuPc/C60

    Dielectric/metal/dielectric alternative transparent electrode: observations on stability/degradation

    Get PDF
    The use of indium-free transparent conductive electrodes is of great interest for organic optoelectronic devices. Among the possible replacements for ITO, dielectric/metal/dielectric (D/M/D) multilayer structures have already proven to be quite efficient. One issue with organic devices is their lifetime, which depends not only on the organic molecules used but also on the electrodes. Therefore we study the variation, with elapsed time, of the electrical and optical properties of different D/M/D structures, with M  =  Ag or Cu/Ag. Six years after realization, it has been shown that if some structures retained an acceptable conductivity, some others became non-conductive. For a sample which remains conductive, in the case of a PET/MoO3/Ag/MoO3 multilayer structure, the sheet resistance changes from 5 Ω/sq–17 Ω/sq after six years. This evolution can be compared to that of a PET/ITO electrode that varies from 25 Ω/sq–900 Ω/sq after six years. It means that not only are the PET/MoO3/Ag/MoO3 multilayer structures more flexible than PET/ITO, but they can also be more stable. Nevertheless, if some PET/MoO3/Ag/MoO3 multilayer structures are quite stable, some others are not. This possible degradation appears to be caused primarily by the physical agglomeration of Ag, which can result in Ag film disruption. This Ag diffusion seems to be caused by humidity-induced degradation in these Ag-based D/M/D structures. Initially, defects begin to grow at a \u27nucleus\u27, usually a microscopic particle (or pinhole, etc), and then they spread radially outward to form a nearly circular pattern. For a critical density of such defects, the structure becomes non-conductive. Moreover the effect of humidity promotes Ag electrochemical reactions that produce Ag+ ions and enhances surface diffusivity with AgCl formation

    Effect of MoO3 in the cathode buffer layer on the behaviour of layered organic solar cells

    Get PDF
    The behaviour of small-molecule organic solar cells based on coper-phthalocyanine/fullerene with different cathode buffer layer is investigated as a function of air exposure duration. We present the study of the effect of MoO3 on the properties of photovoltaic solar cells (OPVCs) when it is introduced in the cathode buffer layer (CBL). Photovoltaic performances were measured as a function of time of air exposure. During the first days of air exposure the efficiency of the OPVCs with MoO3 in their CBL increases significantly, while it decreases immediately after air exposure in the case of reference OPVCs, i.e. without MoO3 in the CBL. Nevertheless, the lifetime of the OPVCs with MoO3 in their CBL is around 60 days, while it is only 10 days in the case of reference OPVCs. The initial increase of the OPVC with MoO3 in their CBL is attributed to the slow decrease of the work function of MoO3 due to progressive contamination. Then, the progressive degradation of the OPVCs efficiency is due water vapour and oxygen contamination of the organic layers. The use of a double CBL, Alq3/MoO3, allows to interrupt the growth of pinholes, defects and increases the path of permeating gas. Also it can prevent the contamination of the organic layer by Al. All this results in significant increase of the lifetime of the OPVCs

    Experimental and Numerical Study of a Turbulent Multiple Jets Issued from Lobed Diffusers

    Get PDF
    A combined experimental and computational study of a turbulent multiple jet from lobed diffusers is performed. The main interest of these multiple lobed jets is to come up with the best configuration that improves the thermal and dynamic homogenization in air diffusion units that can be used for ventilation, heating and air conditioning of residential premises. Herein, the configuration of a central lobed jet surrounded by six equidistant peripheral lobed jets has been investigated. On the experimental level, flow velocities and temperatures were measured by a multifunctional thermo-anemometer. In terms of numerical simulation, the conservation equations of mass, momentum and energy are solved while involving four turbulence models, viz., the k-ϵ model, the k-ω, the shear stress transport (SST) k-ω model and the Reynolds Stress Model (RSM). The findings are compared with thermo-anemometer measurements. It turns out that the SST k- ω model is most appropriate for predicting the average flow characteristics
    • …
    corecore