78 research outputs found

    The Fermion Monte Carlo revisited

    Get PDF
    In this work we present a detailed study of the Fermion Monte Carlo algorithm (FMC), a recently proposed stochastic method for calculating fermionic ground-state energies [M.H. Kalos and F. Pederiva, Phys. Rev. Lett. vol. 85, 3547 (2000)]. A proof that the FMC method is an exact method is given. In this work the stability of the method is related to the difference between the lowest (bosonic-type) eigenvalue of the FMC diffusion operator and the exact fermi energy. It is shown that within a FMC framework the lowest eigenvalue of the new diffusion operator is no longer the bosonic ground-state eigenvalue as in standard exact Diffusion Monte Carlo (DMC) schemes but a modified value which is strictly greater. Accordingly, FMC can be viewed as an exact DMC method built from a correlated diffusion process having a reduced Bose-Fermi gap. As a consequence, the FMC method is more stable than any transient method (or nodal release-type approaches). We illustrate the various ideas presented in this work with calculations performed on a very simple model having only nine states but a full sign problem. Already for this toy model it is clearly seen that FMC calculations are inherently uncontrolled.Comment: 49 pages with 4 postscript figure

    Coherent coupling between radio frequency, optical, and acoustic waves in piezo-optomechanical circuits

    Full text link
    The interaction of optical and mechanical modes in nanoscale optomechanical systems has been widely studied for applications ranging from sensing to quantum information science. Here, we develop a platform for cavity optomechanical circuits in which localized and interacting 1550 nm photons and 2.4 GHz phonons are combined with photonic and phononic waveguides. Working in GaAs facilitates manipulation of the localized mechanical mode either with a radio frequency field through the piezo-electric effect, or optically through the strong photoelastic effect. We use this to demonstrate a novel acoustic wave interference effect, analogous to coherent population trapping in atomic systems, in which the coherent mechanical motion induced by the electrical drive can be completely cancelled out by the optically-driven motion. The ability to manipulate cavity optomechanical systems with equal facility through either photonic or phononic channels enables new device and system architectures for signal transduction between the optical, electrical, and mechanical domains

    Optomechanical Crystals

    Get PDF
    Structured, periodic optical materials can be used to form photonic crystals capable of dispersing, routing, and trapping light. A similar phenomena in periodic elastic structures can be used to manipulate mechanical vibrations. Here we present the design and experimental realization of strongly coupled optical and mechanical modes in a planar, periodic nanostructure on a silicon chip. 200-Terahertz photons are co-localized with mechanical modes of Gigahertz frequency and 100-femtogram mass. The effective coupling length, which describes the strength of the photon-phonon interaction, is as small as 2.9 microns, which, together with minute oscillator mass, allows all-optical actuation and transduction of nanomechanical motion with near quantum-limited sensitivity. Optomechanical crystals have many potential applications, from RF-over-optical communication to the study of quantum effects in mesoscopic mechanical systems.Comment: 16 pages, 7 figure

    A Phase 3 Trial of Luspatercept in Patients with Transfusion-Dependent ÎČ-Thalassemia

    Get PDF
    BACKGROUND: Patients with transfusion-dependent ÎČ-thalassemia need regular red-cell transfusions. Luspatercept, a recombinant fusion protein that binds to select transforming growth factor ÎČ superfamily ligands, may enhance erythroid maturation and reduce the transfusion burden (the total number of red-cell units transfused) in such patients. METHODS: In this randomized, double-blind, phase 3 trial, we assigned, in a 2:1 ratio, adults with transfusion-dependent ÎČ-thalassemia to receive best supportive care plus luspatercept (at a dose of 1.00 to 1.25 mg per kilogram of body weight) or placebo for at least 48 weeks. The primary end point was the percentage of patients who had a reduction in the transfusion burden of at least 33% from baseline during weeks 13 through 24 plus a reduction of at least 2 red-cell units over this 12-week interval. Other efficacy end points included reductions in the transfusion burden during any 12-week interval and results of iron studies. RESULTS: A total of 224 patients were assigned to the luspatercept group and 112 to the placebo group. Luspatercept or placebo was administered for a median of approximately 64 weeks in both groups. The percentage of patients who had a reduction in the transfusion burden of at least 33% from baseline during weeks 13 through 24 plus a reduction of at least 2 red-cell units over this 12-week interval was significantly greater in the luspatercept group than in the placebo group (21.4% vs. 4.5%, P<0.001). During any 12-week interval, the percentage of patients who had a reduction in transfusion burden of at least 33% was greater in the luspatercept group than in the placebo group (70.5% vs. 29.5%), as was the percentage of those who had a reduction of at least 50% (40.2% vs. 6.3%). The least-squares mean difference between the groups in serum ferritin levels at week 48 was -348 ÎŒg per liter (95% confidence interval, -517 to -179) in favor of luspatercept. Adverse events of transient bone pain, arthralgia, dizziness, hypertension, and hyperuricemia were more common with luspatercept than placebo. CONCLUSIONS: The percentage of patients with transfusion-dependent ÎČ-thalassemia who had a reduction in transfusion burden was significantly greater in the luspatercept group than in the placebo group, and few adverse events led to the discontinuation of treatment. (Funded by Celgene and Acceleron Pharma; BELIEVE ClinicalTrials.gov number, NCT02604433; EudraCT number, 2015-003224-31.)
    • 

    corecore