11 research outputs found

    Illegitimate recombination: An efficient method for random mutagenesis in Mycobacterium avium subsp. hominissuis

    Get PDF
    Background: The genus Mycobacterium (M.) comprises highly pathogenic bacteria such as M. tuberculosis as well as environmental opportunistic bacteria called non-tuberculous mycobacteria (NTM). While the incidence of tuberculosis is declining in the developed world, infection rates by NTM are increasing. NTM are ubiquitous and have been isolated from soil, natural water sources, tap water, biofilms, aerosols, dust and sawdust. Lung infections as well as lymphadenitis are most often caused by M. avium subsp. hominissuis (MAH), which is considered to be among the clinically most important NTM. Only few virulence genes from M. avium have been defined among other things due to difficulties in generating M. avium mutants. More efforts in developing new methods for mutagenesis of M. avium and identification of virulence-associated genes are therefore needed. Results: We developed a random mutagenesis method based on illegitimate recombination and integration of a Hygromycin-resistance marker. Screening for mutations possibly affecting virulence was performed by monitoring of pH resistance, colony morphology, cytokine induction in infected macrophages and intracellular persistence. Out of 50 randomly chosen Hygromycin-resistant colonies, four revealed to be affected in virulence-related traits. The mutated genes were MAV_4334 (nitroreductase family protein), MAV_5106 (phosphoenolpyruvate carboxykinase), MAV_1778 (GTP-binding protein LepA) and MAV_3128 (lysyl-tRNA synthetase LysS). Conclusions: We established a random mutagenesis method for MAH that can be easily carried out and combined it with a set of phenotypic screening methods for the identification of virulence-associated mutants. By this method, four new MAH genes were identified that may be involved in virulence

    SHORT TERM OUTCOME OF PATIENTS WITH HEPATOPANCREATOBILIARY MALIGNANCIES TREATED IN A MULTIDISCIPLINARY HEPATOBILIARY UNIT IN A TERTIARY REFERRAL CENTER

    Get PDF
    Purpose: Specialisation in hepatopancreatobiliary (HPB) surgery has evolved over the past few decades based on better understanding of the biology and the behaviour of the diseases. In this review from a specialised HPB service, we aim to provide an overview of the HPB oncological cases managed in a tertiary care cancer hospital. Methods: All cases of HPB malignancies treated in our hospital between October 2014 and September 2015 were included in the study. Clinical findings, operative details and short-term post-operative outcomes were assessed from a prospectively managed database. Results: A total of 65 oncological procedures were performed over 1 year. These included 23 hepatic resections, 27 pancreaticoduodenectomies, 5 radical surgeries for gallbladder cancer, 2 distal pancreatectomy and 8 nephrectomies with exploration of the inferior vena cava. One patient successfully underwent Associated Liver Partition with Portal vein ligation and staged hepatectomy (ALPPS Procedure), which to our knowledge was the rst ALPPS procedure carried out in Pakistan. Conclusion: The short-term experience of patients managed in specialised HPB unit has shown good outcomes.There is a need for establishing HPB units in most tertiary care hospitals in the country. Key words: Associated liver partition with portal vein ligation and staged hepatectomy procedure, hepatic resections, hepatopancreatobiliary surgery, pancreaticoduodenectomy

    A Comparison of Re-Sampling Techniques for Detection of Multi-Step Attacks on Deep Learning Models

    Get PDF
    The increasing dependence on data analytics and artificial intelligence (AI) methodologies across various domains has prompted the emergence of apprehensions over data security and integrity. There exists a consensus among scholars and experts that the identification and mitigation of Multi-step attacks pose significant challenges due to the intricate nature of the diverse approaches utilized. This study aims to address the issue of imbalanced datasets within the domain of Multi-step attack detection. To achieve this objective, the research explores three distinct re-sampling strategies, namely over-sampling, under-sampling, and hybrid re-sampling techniques. The study offers a comprehensive assessment of several re-sampling techniques utilized in the detection of Multi-step attacks on deep learning (DL) models. The efficacy of the solution is evaluated using a Multi-step cyber attack dataset that emulates attacks across six attack classes. Furthermore, the performance of several re-sampling approaches with numerous traditional machine learning (ML) and deep learning (DL) models are compared, based on performance metrics such as accuracy, precision, recall, F-1 score, and G-mean. In contrast to preliminary studies, the research focuses on Multi-step attack detection. The results indicate that the combination of Convolutional Neural Networks (CNN) with Deep Belief Networks (DBN), Long Short-Term Memory (LSTM), and Recurrent Neural Networks (RNN) provides optimal results as compared to standalone ML/DL models. Moreover, the results also depict that SMOTEENN, a hybrid re-sampling technique, demonstrates superior effectiveness in enhancing detection performance across various models and evaluation metrics. The findings indicate the significance of appropriate re-sampling techniques to improve the efficacy of Multi-step attack detection on DL models

    Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries

    Get PDF
    Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P < 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely

    Transcriptomic and proteomic analyses reveal key innate immune signatures in the host response to the gastrointestinal pathogen Campylobacter concisus

    No full text
    Pathogenic species within the genus Campylobacter are responsible for a considerable burden on global health. Campylobacter concisus is an emergent pathogen that plays a role in acute and chronic gastrointestinal disease. Despite ongoing research on Campylobacter virulence mechanisms, little is known regarding the immunological profile of the host response to Campylobacter infection. In this study, we describe a comprehensive global profile of innate immune responses to C. concisus infection in differentiated THP-1 macrophages infected with an adherent and invasive strain of C. concisus. Using RNA sequencing (RNA-seq), quantitative PCR (qPCR), mass spectrometry, and confocal microscopy, we observed differential expression of pattern recognition receptors and robust upregulation of DNA- and RNA-sensing molecules. In particular, we observed IFI16 inflammasome assembly in C. concisus-infected macrophages. Global profiling of the transcriptome revealed the significant regulation of a total of 8,343 transcripts upon infection with C. concisus, which included the activation of key inflammatory pathways involving CREB1, NF-κB, STAT, and interferon regulatory factor signaling. Thirteen microRNAs and 333 noncoding RNAs were significantly regulated upon infection, including MIR221, which has been associated with colorectal carcinogenesis. This study represents a major advance in our understanding of host recognition and innate immune responses to infection by C. concisus
    corecore