24 research outputs found

    Multiple-line inference of selection on quantitative traits

    Full text link
    Trait differences between species may be attributable to natural selection. However, quantifying the strength of evidence for selection acting on a particular trait is a difficult task. Here we develop a population-genetic test for selection acting on a quantitative trait which is based on multiple-line crosses. We show that using multiple lines increases both the power and the scope of selection inference. First, a test based on three or more lines detects selection with strongly increased statistical significance, and we show explicitly how the sensitivity of the test depends on the number of lines. Second, a multiple-line test allows to distinguish different lineage-specific selection scenarios. Our analytical results are complemented by extensive numerical simulations. We then apply the multiple-line test to QTL data on floral character traits in plant species of the Mimulus genus and on photoperiodic traits in different maize strains, where we find a signatures of lineage-specific selection not seen in a two-line test.Comment: 21 pages, 11 figures; to appear in Genetic

    Entropy and Barrier-Hopping Determine Conformational Viscoelasticity in Single Biomolecules

    Get PDF
    Biological macromolecules have complex and non-trivial energy landscapes, endowing them a unique conformational adaptability and diversity in function. Hence, understanding the processes of elasticity and dissipation at the nanoscale is important to molecular biology and also emerging fields such as nanotechnology. Here we analyse single molecule fluctuations in an atomic force microscope (AFM) experiment using a generic model of biopolymer viscoelasticity that importantly includes sources of local `internal' conformational dissipation. Comparing two biopolymers, dextran and cellulose, polysaccharides with and without the well-known `chair-to-boat' transition, reveals a signature of this simple conformational change as minima in both the elasticity and internal friction around a characteristic force. A calculation of two-state populations dynamics offers a simple explanation in terms of an elasticity driven by the entropy, and friction by barrier-controlled hopping, of populations on a landscape. The microscopic model, allows quantitative mapping of features of the energy landscape, revealing unexpectedly slow dynamics, suggestive of an underlying roughness to the free energy.Comment: 25 pages, 7 figures, naturemag.bst, modified nature.cls (naturemodified.cls

    Noise-driven oscillations in microbial population dynamics

    Full text link
    Microbial populations in the natural environment are likely to experience growth conditions very different from those of a typical laboratory xperiment. In particular, removal rates of biomass and substrate are unlikely to be balanced under realistic environmental conditions. Here, we consider a single population growing on a substrate under conditions where the removal rates of substrate and biomass are not necessarily equal. For a large population, with deterministic growth dynamics, our model predicts that this system can show transient (damped) oscillations. For a small population, demographic noise causes these oscillations to be sustained indefinitely. These oscillations arise when the dynamics of changes in biomass are faster than the dynamics of the substrate, for example, due to a high microbial death rate and/or low substrate flow rates. We show that the same mechanism can produce sustained stochastic oscillations in a two-species, nutrient-cycling microbial ecosystem. Our results suggest that oscillatory population dynamics may be a common feature of small microbial populations in the natural environment, even in the absence of complex interspecies interactions.Comment: 25 pages, 11 figure

    From genotypes to organisms: State-of-the-art and perspectives of a cornerstone in evolutionary dynamics

    Get PDF
    Understanding how genotypes map onto phenotypes, fitness, and eventually organisms is arguably the next major missing piece in a fully predictive theory of evolution. We refer to this generally as the problem of the genotype-phenotype map. Though we are still far from achieving a complete picture of these relationships, our current understanding of simpler questions, such as the structure induced in the space of genotypes by sequences mapped to molecular structures, has revealed important facts that deeply affect the dynamical description of evolutionary processes. Empirical evidence supporting the fundamental relevance of features such as phenotypic bias is mounting as well, while the synthesis of conceptual and experimental progress leads to questioning current assumptions on the nature of evolutionary dynamics-cancer progression models or synthetic biology approaches being notable examples. This work delves into a critical and constructive attitude in our current knowledge of how genotypes map onto molecular phenotypes and organismal functions, and discusses theoretical and empirical avenues to broaden and improve this comprehension. As a final goal, this community should aim at deriving an updated picture of evolutionary processes soundly relying on the structural properties of genotype spaces, as revealed by modern techniques of molecular and functional analysis.Comment: 111 pages, 11 figures uses elsarticle latex clas

    Biophysics and population size constrains speciation in an evolutionary model of developmental system drift.

    Get PDF
    Developmental system drift is a likely mechanism for the origin of hybrid incompatibilities between closely related species. We examine here the detailed mechanistic basis of hybrid incompatibilities between two allopatric lineages, for a genotype-phenotype map of developmental system drift under stabilising selection, where an organismal phenotype is conserved, but the underlying molecular phenotypes and genotype can drift. This leads to number of emergent phenomenon not obtainable by modelling genotype or phenotype alone. Our results show that: 1) speciation is more rapid at smaller population sizes with a characteristic, Orr-like, power law, but at large population sizes slow, characterised by a sub-diffusive growth law; 2) the molecular phenotypes under weakest selection contribute to the earliest incompatibilities; and 3) pair-wise incompatibilities dominate over higher order, contrary to previous predictions that the latter should dominate. The population size effect we find is consistent with previous results on allopatric divergence of transcription factor-DNA binding, where smaller populations have common ancestors with a larger drift load because genetic drift favours phenotypes which have a larger number of genotypes (higher sequence entropy) over more fit phenotypes which have far fewer genotypes; this means less substitutions are required in either lineage before incompatibilities arise. Overall, our results indicate that biophysics and population size provide a much stronger constraint to speciation than suggested by previous models, and point to a general mechanistic principle of how incompatibilities arise the under stabilising selection for an organismal phenotype
    corecore