2,606 research outputs found

    ASTR 135N.02: Star, Galaxies, and the Universe Lav

    Get PDF

    Optimizing ethanol and bioelectricity production in sugarcane biorefineries in Brazil

    Get PDF
    In sugarcane biorefineries, the lignocellulosic portion of the sugarcane biomass (i.e. bagasse and cane trash) can be used as fuel for electricity production and/or feedstock for second generation (2G) ethanol. This study presents a techno-economic analysis of upgraded sugarcane biorefineries in Brazil, aiming at utilizing surplus bagasse and cane trash for electricity and/or ethanol production. The study investigates the trade-off on sugarcane biomass use for energy production: bioelectricity versus 2G ethanol production. The BeWhere mixed integer and spatially explicit model is used for evaluating the choice of technological options. Different scenarios are developed to find the optimal utilization of sugarcane biomass. The study finds that energy prices, type of electricity substituted, biofuel support and carbon tax, investment costs, and conversion efficiencies are the major factors influencing the technological choice. At the existing market and technological conditions applied in the upgraded biorefineries, 300 PJy^12G ethanol could be optimally produced and exported to the EU, which corresponds to 2.5% of total transport fuel demand in the EU. This study provides a methodological framework on how to optimize the alternative use of agricultural residues and industrial co-products for energy production in agro-industrie

    Mapping Bioenergy Supply and Demand in Selected Least Developed Countries (LDCs): Exploratory Assessment of Modern Bioenergy’s Contribution to SDG7

    Get PDF
    Bioenergy can play an important role in achieving the agreed United Nations Sustainable Development Goals (SDGs) and implementing the Paris Agreement on Climate Change, thereby advancing climate goals, food security, better land use, and sustainable energy for all. In this study, we assess the surplus agricultural residues availability for bioelectricity in six least developed countries (LDCs) in Asia and Africa, namely Bangladesh, Lao-PDR, and Nepal in Asia; and Ethiopia, Malawi, and Zambia in Africa, respectively. The surplus agricultural residues have been estimated using residue-to-product ratio (RPR), agricultural residues lost in the collection, transportation and storage, and their alternative applications. We use a linear regression model to project the economic potential of bioelectricity. The contribution of bioelectricity for meeting the LDCs’ electricity requirements is estimated in a time frame between 2017 and 2030. Our results reveal that the surplus biomass feedstock available from the agriculture sector could provide the total current electricity demand in Malawi alone, followed by Nepal (45%), Bangladesh (29%), Lao People’s Democratic Republic (Lao-PDR) (29%), Ethiopia (27%), and Zambia (13%). This study also explores the complementarity and synergies of bioelectricity, SDG7, and their interlinkages with other SDGs. Findings from the study show that providing access to sustainable energy in the LDCs to meet the SDG7 by 2030 might be a challenge due to limited access to technology, infrastructure, and finance. Site-specific investigations on how much agricultural residues could be extracted in an environmentally benign manner for bioelectricity and increased investment in the bioenergy sector are key potential solutions in a myriad of options required to harness the full energy potential in the LDCs

    Opportunities for bioenergy in the Baltic Sea Region

    Get PDF
    Security of energy supply, promotion of the bio-economy, nutrient recycling, and innovation are prioritized policy areas in the EU Strategy for the Baltic Sea Region (EUBSR). The Baltic Sea Region (BSR) has a great bioenergy potential worth exploring in this context. This paper explores the state-of-art of bioenergy systems and synergies with eco-systems services in the BSR region in the context of developing the region’s bio-economy. In this brief assessment, we consider 8 countries (i.e. Sweden, Finland, Estonia, Latvia, Lithuania, Poland, Denmark, and Belarus) in the region. While the production and use of modern bioenergy can help reduce greenhouse gas (GHG) emissions, promote energy security, diversify energy resources, and contribute to a successful circular economy and rural development, it is important to find a balance between the exploration of resources and the management of eco-systems services. In addition, both climate change vulnerability and bioenergy production may affect the environment and the capacity of the BSR to deliver ecosystem services (ESS). We recommend integrated strategies for optimal use of bioresources in the region. Bioeconomy can be realized by innovative approaches, establishing cross-cutting institutional and policy linkages for increased prosperity and green growth in the Baltic Sea Region

    Production of π0\pi^0 and η\eta mesons in U++U collisions at sNN=192\sqrt{s_{_{NN}}}=192 GeV

    Full text link
    The PHENIX experiment at the Relativistic Heavy Ion Collider measured π0\pi^0 and η\eta mesons at midrapidity in U++U collisions at sNN=192\sqrt{s_{_{NN}}}=192 GeV in a wide transverse momentum range. Measurements were performed in the π0(η)γγ\pi^0(\eta)\rightarrow\gamma\gamma decay modes. A strong suppression of π0\pi^0 and η\eta meson production at high transverse momentum was observed in central U++U collisions relative to binary scaled pp++pp results. Yields of π0\pi^0 and η\eta mesons measured in U++U collisions show similar suppression pattern to the ones measured in Au++Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV for similar numbers of participant nucleons. The η\eta/π0\pi^0 ratios do not show dependence on centrality or transverse momentum, and are consistent with previously measured values in hadron-hadron, hadron-nucleus, nucleus-nucleus, and e+ee^+e^- collisions.Comment: 403 authors from 72 institutions, 13 pages, 6 figures, 7 tables, 2012 data. v2 is version accepted by Physical Review C. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
    corecore