6 research outputs found

    Dynamic structure development for the data of systems of the image automated recognition

    No full text
    The prototype development for the system of the multipurpose recognition of images on the base of the extraction problem solution, sign analysis and identification of objects of various type is the aim of the paper. As a result the multilevel model for the representation of the image and structure of data for the extraction and associative storage of objects has been developed. The analytical and structural sign description of objects on the base of the transformation into isotropic objects on the root-mean-square size has been constructed. The prototype of the multipurpose system, ensuring the investigation of sign sets and supporting the recognition of half-tone and two-gradation images without use of external controlling parameters, has been realized. Elements of the system of the multipurpose recognition have been introduced into operationAvailable from VNTIC / VNTIC - Scientific & Technical Information Centre of RussiaSIGLERURussian Federatio

    A Model of Pixel and Superpixel Clustering for Object Detection

    No full text
    The paper presents a model of structured objects in a grayscale or color image, described by means of optimal piecewise constant image approximations, which are characterized by the minimum possible approximation errors for a given number of pixel clusters, where the approximation error means the total squared error. An ambiguous image is described as a non-hierarchical structure but is represented as an ordered superposition of object hierarchies, each containing at least one optimal approximation in g0 = 1, 2,..., etc., colors. For the selected hierarchy of pixel clusters, the objects-of-interest are detected as the pixel clusters of optimal approximations, or as their parts, or unions. The paper develops the known idea in cluster analysis of the joint application of Ward’s and K-means methods. At the same time, it is proposed to modernize each of these methods and supplement them with a third method of splitting/merging pixel clusters. This is useful for cluster analysis of big data described by a convex dependence of the optimal approximation error on the cluster number and also for adjustable object detection in digital image processing, using the optimal hierarchical pixel clustering, which is treated as an alternative to the modern informally defined “semantic” segmentation

    Product of Three Octonions

    No full text

    Astrometric Apparent Motion of High-redshift Radio Sources

    No full text
    Radio-loud quasars at high redshift ( z ≄ 4) are rare objects in the universe and rarely observed with Very Long Baseline Interferometry (VLBI). But some of them have flux density sufficiently high for monitoring of their apparent position. The instability of the astrometric positions could be linked to the astrophysical process in the jetted active galactic nuclei in the early universe. Regular observations of the high-redshift quasars are used for estimating their apparent proper motion over several years. We have undertaken regular VLBI observations of several high-redshift quasars at 2.3 GHz ( S band) and 8.4 GHz ( X band) with a network of five radio telescopes: 40 m Yebes (Spain), 25 m Sheshan (China), and three 32 m telescopes of the Quasar VLBI Network (Russia)—Svetloe, Zelenchukskaya, and Badary. Additional facilities joined this network occasionally. The sources have also been observed in three sessions with the European VLBI Network in 2018–2019 and one Long Baseline Array experiment in 2018. In addition, several experiments conducted with the Very Long Baseline Array in 2017–2018 were used to improve the time sampling and the statistics. Based on these 37 astrometric VLBI experiments between 2017 and 2021, we estimated the apparent proper motions of four quasars: 0901+697, 1428+422, 1508+572, and 2101+600

    The IVS data input to ITRF2014

    Get PDF
    2015ivs..data....1N - GFZ Data Services, Helmoltz Centre, Potsdam, GermanyVery Long Baseline Interferometry (VLBI) is a primary space-geodetic technique for determining precise coordinates on the Earth, for monitoring the variable Earth rotation and orientation with highest precision, and for deriving many other parameters of the Earth system. The International VLBI Service for Geodesy and Astrometry (IVS, http://ivscc.gsfc.nasa.gov/) is a service of the International Association of Geodesy (IAG) and the International Astronomical Union (IAU). The datasets published here are the results of individual Very Long Baseline Interferometry (VLBI) sessions in the form of normal equations in SINEX 2.0 format (http://www.iers.org/IERS/EN/Organization/AnalysisCoordinator/SinexFormat/sinex.html, the SINEX 2.0 description is attached as pdf) provided by IVS as the input for the next release of the International Terrestrial Reference System (ITRF): ITRF2014. This is a new version of the ITRF2008 release (Bockmann et al., 2009). For each session/ file, the normal equation systems contain elements for the coordinate components of all stations having participated in the respective session as well as for the Earth orientation parameters (x-pole, y-pole, UT1 and its time derivatives plus offset to the IAU2006 precession-nutation components dX, dY (https://www.iau.org/static/resolutions/IAU2006_Resol1.pdf). The terrestrial part is free of datum. The data sets are the result of a weighted combination of the input of several IVS Analysis Centers. The IVS contribution for ITRF2014 is described in Bachmann et al (2015), Schuh and Behrend (2012) provide a general overview on the VLBI method, details on the internal data handling can be found at Behrend (2013)
    corecore