40 research outputs found

    A Mendelian randomization analysis of circulating lipid traits and breast cancer risk

    Get PDF
    Background: Conventional epidemiologic studies have evaluated associations between circulating lipid levels and breast cancer risk, but results have been inconsistent. As Mendelian randomization analyses may provide evidence for causal inference, we sought to evaluate potentially unbiased associations between breast cancer risk and four genetically predicted lipid traits. Methods: Previous genome-wide association studies (GWAS) have identified 164 discrete variants associated with high density lipoprotein-cholesterol (HDL-C), low density lipoprotein-cholesterol (LDL-C), triglycerides and total cholesterol. We used 162 of these unique variants to construct weighted genetic scores (wGSs) for a total of 101 424 breast cancer cases and 80 253 controls of European ancestry from the Breast Cancer Association Consortium (BCAC). Unconditional logistic regression was used to estimate odds ratios (OR) and 95% confidence intervals (CI) for associations between per standard deviation increase in genetically predicted lipid traits and breast cancer risk. Additional Mendelian randomization analysis approaches and sensitivity analyses were conducted to assess pleiotropy and instrument validity. Results: Corresponding to approximately 15 mg/dL, one standard deviation increase in genetically predicted HDL-C was associated with a 12% increased breast cancer risk (OR: 1.12, 95% CI: 1.08-1.16). Findings were consistent after adjustment for breast cancer risk factors and were robust in several sensitivity analyses. Associations with genetically predicted triglycerides and total cholesterol were inconsistent, and no association for genetically predicted LDL-C was observed. Conclusions: This study provides strong evidence that circulating HDL-C may be associated with an increased risk of breast cancer, whereas LDL-C may not be related to breast cancer risk.Peer reviewe

    Polychlorinated biphenyls and their association with survival following breast cancer

    Get PDF
    Polychlorinated biphenyls (PCBs) are hypothesized to influence breast carcinogenesis due to their persistence and potential to induce estrogenic and anti-estrogenic effects. Whether PCBs influence survival following breast cancer is unknown

    Using Mendelian randomisation to identify opportunities for type 2 diabetes prevention by repurposing medications used for lipid management

    Get PDF
    Background: Maintaining a healthy lifestyle to reduce type 2 diabetes (T2D) risk is challenging and additional strategies for T2D prevention are needed. We evaluated several lipid control medications as potential therapeutic options for T2D prevention using tissue-specific predicted gene expression summary statistics in a two-sample Mendelian randomisation (MR) design. Methods: Large-scale European genome-wide summary statistics for lipids and T2D were leveraged in our multi-stage analysis to estimate changes in either lipid levels or T2D risk driven by tissue-specific predicted gene expression. We incorporated tissue-specific predicted gene expression summary statistics to proxy therapeutic effects of three lipid control medications [i.e., statins, icosapent ethyl (IPE), and proprotein convertase subtilisin/kexin type-9 inhibitors (PCSK-9i)] on T2D susceptibility using two-sample Mendelian randomisation (MR). Findings: IPE, as proxied via increased FADS1 expression, was predicted to lower triglycerides and was associated with a 53% reduced risk of T2D. Statins and PCSK-9i, as proxied by reduced HMGCR and PCSK9 expression, respectively, were predicted to lower LDL-C levels but were not associated with T2D susceptibility. Interpretation: Triglyceride lowering via IPE may reduce the risk of developing T2D in populations of European ancestry. However, experimental validation using animal models is needed to substantiate our results and to motivate randomized control trials (RCTs) for IPE as putative treatment for T2D prevention. Funding: Only summary statistics were used in this analysis. Funding information is detailed under Acknowledgments. © 2022Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Modification of the association between recreational physical activity and survival after breast cancer by promoter methylation in breast cancer-related genes

    Get PDF
    Background: Mechanisms underlying the inverse association between physical activity and survival after breast cancer are unresolved, but DNA methylation may play a role. We hypothesized that promoter methylation of breast cancer-related genes, as well as global methylation, may modify the association between prediagnostic recreational physical activity (RPA) and breast cancer mortality. Methods: Using a population-based sample of 1254 women diagnosed with first primary breast cancer, we examined modification of the RPA-mortality association by gene-specific promoter methylation and global methylation. Average lifetime RPA was assessed from menarche to diagnosis through structured in-home interviews. Promoter methylation of 13 breast cancer-related genes was evaluated in archived tumor by methylation-specific polymerase chain reaction and MethyLight assay. Global methylation in white blood cell DNA was determined at long interspersed nucleotide element 1 and by the luminometric methylation assay. After approximately 15 years of follow-up, 486 patients had died, and 186 of the deaths were breast cancer-related. We used Cox proportional hazards regression to estimate HRs and 95% CIs as well as likelihood ratio tests to assess multiplicative interactions. Results: All-cause mortality was lower only among physically active women with methylated promoter of APC (HR 0.60, 95% CI 0.40–0.80), CCND2 (HR 0.56, 95% CI 0.32–0.99), HIN (HR 0.55, 95% CI 0.38–0.80), and TWIST1 (HR 0.28, 95% CI 0.14–0.56) in tumors, but not among those with unmethylated tumors (significant interaction p < 0.05). We found no interaction between RPA and global methylation. Conclusions: The improved survival after breast cancer that is associated with RPA may be more pronounced in women with promoter tumor methylation in biologically plausible genes

    DNA methylation modifies the association between obesity and survival after breast cancer diagnosis

    Get PDF
    Mechanisms underlying the poor breast cancer prognosis among obese women are unresolved. DNA methylation levels are linked to obesity and to breast cancer survival. We hypothesized that obesity may work in conjunction with the epigenome to alter prognosis. Using a population-based sample of women diagnosed with first primary breast cancer, we examined modification of the obesity-mortality association by DNA methylation. In-person interviews were conducted approximately 3 months after diagnosis. Weight and height were assessed [to estimate body mass index (BMI)], and blood samples collected. Promoter methylation of 13 breast cancer-related genes was assessed in archived tumor by methylation-specific PCR and Methyl Light. Global methylation in white blood cell DNA was assessed by analysis of long interspersed elements-1 (LINE-1) and with the lumino-metric methylation assay (LUMA). Vital status among 1308 patients (with any methylation biomarker and complete BMI assessment) was determined after approximately 15 years of follow-up (N = 194/441 deaths due to breast cancer-specific/all-cause mortality). We used Cox proportional hazards regression to estimate hazard ratios (HRs) and 95 % confidence intervals (CIs) using two-sided p values of 0.05. Breast cancer-specific mortality was higher among obese (BMI ≥ 30) patients with promoter methylation in APC (HR = 2.47; 95 % CI = 1.43–4.27) and TWIST1 (HR = 4.25; 95 % CI = 1.43–12.70) in breast cancer tissue. Estimates were similar, but less pronounced, for all-cause mortality. Increased all-cause (HR =1.81; 95 % CI = 1.19–2.74) and breast cancer-specific (HR = 2.61; 95 % CI = 1.45–4.69) mortality was observed among obese patients with the lowest LUMA levels. The poor breast cancer prognosis associated with obesity may depend on methylation profiles, which warrants further investigation

    Organochlorine insecticides DDT and chlordane in relation to survival following breast cancer: Organochlorine Insecticides and Breast Cancer

    Get PDF
    Organochlorine insecticides have been studied extensively in relation to breast cancer incidence and results from two meta-analyses have been null for late-life residues, possibly due to measurement error. Whether these compounds influence survival remains to be fully explored. We examined associations between organochlorine insecticides (p,p’-DDT, its primary metabolite, p,p’-DDE, and chlordane) assessed shortly after diagnosis and survival among women with breast cancer. A population-based sample of women diagnosed with a first primary invasive or in situ breast cancer in 1996–1997 and with available organochlorine blood measures (n=633) were followed for vital status through 2011. After follow-up of 5 and 15 years, we identified 55 and 189 deaths, of which 36 and 74, respectively, were breast cancer-related. Using Cox regression models, we estimated the multivariable-adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) for lipid-adjusted organochlorine concentrations with all-cause and breast cancer-specific mortality. At 5 years after diagnosis, the highest tertile of DDT concentration was associated with all-cause (HR=2.19; 95%CI: 1.02, 4.67) and breast cancer-specific (HR=2.72; 95%CI: 1.04, 7.13) mortality. At 15 years, middle tertile concentrations of DDT (HR=1.42; CI 0.99, 2.06) and chlordane (HR=1.42; 95%CI: 0.94, 2.12) were modestly associated with all-cause and breast cancer-specific mortality. Third tertile DDE concentrations were inversely associated with 15-year all-cause mortality (HR=0.66; 95%CI: 0.44, 0.99). This is the first population-based study in the United States to show that DDT may adversely impact survival following breast cancer diagnosis. Further studies are warranted given the high breast cancer burden and the ubiquity of these chemicals

    Modification of the association between recreational physical activity and survival after breast cancer by promoter methylation in breast cancer-related genes

    Get PDF
    Abstract Background Mechanisms underlying the inverse association between physical activity and survival after breast cancer are unresolved, but DNA methylation may play a role. We hypothesized that promoter methylation of breast cancer-related genes, as well as global methylation, may modify the association between prediagnostic recreational physical activity (RPA) and breast cancer mortality. Methods Using a population-based sample of 1254 women diagnosed with first primary breast cancer, we examined modification of the RPA-mortality association by gene-specific promoter methylation and global methylation. Average lifetime RPA was assessed from menarche to diagnosis through structured in-home interviews. Promoter methylation of 13 breast cancer-related genes was evaluated in archived tumor by methylation-specific polymerase chain reaction and MethyLight assay. Global methylation in white blood cell DNA was determined at long interspersed nucleotide element 1 and by the luminometric methylation assay. After approximately 15 years of follow-up, 486 patients had died, and 186 of the deaths were breast cancer-related. We used Cox proportional hazards regression to estimate HRs and 95% CIs as well as likelihood ratio tests to assess multiplicative interactions. Results All-cause mortality was lower only among physically active women with methylated promoter of APC (HR 0.60, 95% CI 0.40–0.80), CCND2 (HR 0.56, 95% CI 0.32–0.99), HIN (HR 0.55, 95% CI 0.38–0.80), and TWIST1 (HR 0.28, 95% CI 0.14–0.56) in tumors, but not among those with unmethylated tumors (significant interaction p < 0.05). We found no interaction between RPA and global methylation. Conclusions The improved survival after breast cancer that is associated with RPA may be more pronounced in women with promoter tumor methylation in biologically plausible genes

    Nutrient Pathways and Breast Cancer Risk: The Long Island Breast Cancer Study Project

    Get PDF
    The relative importance of biochemical pathways has not been previously examined when considering the influence of diet on breast cancer risk. To address this issue, we utilized interview data from a population-based sample of 1,463 breast cancer cases and 1,500 controls. Dietary intake was assessed shortly after diagnosis using a 101-item food frequency questionnaire. Age- and energy-adjusted odds ratios (ORs) for individual micro- and macronutrients were estimated with logistic regression. Hierarchical modeling was employed to account for biologically plausible nutrient pathways (one-carbon metabolism, oxidative stress, glycemic control and phytoestrogens). Effect estimates from hierarchical modeling were more precise and plausible compared to those from multivariable models. The strongest relationship observed was for the glycemic control pathway, but confidence intervals (CI) were wide [OR (95% CI): 0.86 (0.62, 1.21)]. Little or no effect was observed for the one-carbon metabolism, oxidative stress and phytoestrogen pathways. Associations were similar when stratified by supplement use. Our approach that emphasizes biochemical pathways, rather than individual nutrients, revealed that breast cancer risk may be more strongly associated with glycemic control factors than those from other pathways considered. Our study emphasizes the importance of accounting for multiple nutrient pathways when examining associations between dietary intake and breast cancer
    corecore