397 research outputs found

    Influence of Natural Zeolite and Mineral additive on Bacterial Self-healing Concrete: A Review

    Get PDF
    With time, the development of micro-cracks in concrete is a frequently reported problem in the structures due to the ingress of harmful substances, leading to the degradation of its quality and strength, which ultimately declines the construction. The present work is a review paper based on enhancing the self-healing property of concrete by inducing different bacteria alone or incorporating different mineral additives. It has been seen that various rehabilitated methodologies are in queue to surmount concrete’s weaknesses and to increase its strength and durability. The latest methodology includes using non-pathogenic microbes in concrete as Microbial induced Calcium Carbonate Precipitation (MICCP). The property of precipitating calcium carbonate (CaCO3) crystals by their metabolic activities helps repair the cracks in harsh conditions and improve their strength. Ureolytic bacteria like Bacillus pasteurii/Sporosarcina pasteurii, Bacillus subtilis, Bacillus megaterium, etc., have a specific property by which they can excite urea when integrated with a calcium source and help in sealing the cracks by CaCO3 precipitation. Different studies have observed that specimens having a bacterial concentration of 105-107 cells/ml with Natural Zeolite (NZ) replacement (10%) represents better interaction of the microstructure of concrete because of the formation of calcium silicate hydrate (CSH) gel. Further, the reduction in CH bond with reduced pore space has also been observed. NZ alone enhances micro-structural property, but it shows CaCo3 precipitation and more densification of microstructure under bacterial combination. XRD also confirms an increase in the calcite composition when the bacterial concentration of 105-107 cells/ml is used. The overall properties of standard and high-strength bacterial concrete (105-107 cells/ml) with 10% Natural Zeolite replacement can provide a better option for the future of sustained and strong concrete. Doi: 10.28991/CEJ-2022-08-05-015 Full Text: PD

    The level and distribution of the GABABR1 and GABABR2 receptor subunits in the rat\u27s inferior colliculus

    Get PDF
    The type B Îł-aminobutyric acid receptor (GABAB receptor) is an important neurotransmitter receptor in the midbrain auditory structure, the inferior colliculus (IC). A functional GABAB receptor is a heterodimer consisting of two subunits, GABABR1 and GABABR2. Western blotting and immunohistochemical experiments were conducted to examine the expression of the two subunits over the IC including its central nucleus, dorsal cortex, and external cortex (ICc, ICd, and ICx). Results revealed that the two subunits existed in both cell bodies and the neuropil throughout the IC. The two subunits had similar regional distributions over the IC. The combined level of cell body and neuropil labelling was higher in the ICd than the other two subdivisions. Labelling in the ICc and ICx was stronger in the dorsal than the ventral regions. In spite of regional differences, no defined boundaries were formed between different areas. For both subunits, the regional distribution of immunoreactivity in the neuropil was parallel to that of combined immunoreactivity in the neuropil and cell bodies. The density of labelled cell bodies tended to be higher but sizes of cell bodies tended to be smaller in the ICd than in the other subdivisions. No systematic regional changes were found in the level of cell body immunoreactivity, except that GABABR2-immunoreactive cell bodies in the ICd had slightly higher optic density than in other regions. Elongated cell bodies existed throughout the IC. Many labelled cell bodies along the outline of the IC were oriented in parallel to the outline. No strong tendency of orientation was found in labelled cell bodies in ICc. Regional distributions of the subunits in ICc correlated well with inputs to this subdivision. Our finding regarding the contrast in the level of neuropil immunoreactivity among different subdivisions is consistent with the fact that the GABAB receptor has different pre- and postsynaptic functions in different IC regions

    Fabrication of Microbicidal Silver Nanoparticles: Green Synthesis and Implications in the Containment of Bacterial Biofilm on Orthodontal Appliances

    Get PDF
    Among various metal-based nanoparticles, silver nanoparticles (AgNPs) manifest superior inhibitory effects against several microorganisms. In fact, the AgNP-based treatment has been reported to inhibit both sensitive and resistant isolates of bacteria and other disease-causing microbes with equal propensity. Keeping this fact into consideration, we executed bio-mediated synthesis of AgNPs employing extract of flower and various other parts (such as bud and leaf) of the Hibiscus rosa-sinensis plant. The physicochemical characterization of as-synthesized AgNPs was executed employing transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta potential, Fourier transform infrared (FTIR) spectroscopy, and UV-Vis spectroscopy, etc. The as-synthesized AgNPs demonstrated strong antimicrobial activity against both Gram-positive and Gram-negative bacteria with equal propensity. The as-synthesized AgNPs successfully inhibited Streptococcus mutans (S. mutans), one of the main causative bacteria responsible for dental caries. Considering the fact that orthodontic appliances facilitate infliction of the oral cavity with a range of microbes including S. mutans, we determined the growth inhibitory and anti-adherence activities of AgNPs on orthodontic appliances. We performed microbiological assays employing AgNPs adsorbed onto the surface of nickel–titanium (Ni-Ti) orthodontic wires. A topographic analysis of the decontaminated Ni-Ti orthodontic wires was performed by scanning electron microscopy. In addition to antimicrobial and anti-biofilm activities against oral S. mutans, the as-fabricated AgNPs demonstrated significant inhibitory and anti-biofilm properties against other biofilm-forming bacteria such as Escherichia coli and Listeria monocytogenes

    Current Management Strategies in Breast Cancer by Targeting Key Altered Molecular Players

    Get PDF
    Breast Cancer is second largest disease affecting women worldwide. It remains the most frequently reported and leading cause of death among women in both developed and developing countries. Chemoprevention is one the promising approaches which reduces breast cancer. Tamoxifen and raloxifene are commonly used for treatment of breast cancer in women with high risk, although resistance occurs by tamoxifen after five years of therapy and both drugs cause uterine cancer and thromboembolic events. Aromatase inhibitors are coming up as potential option for prevention in treatment with adjuvant trials in practice. The combination of aromatase inhibitors along with tamoxifen can also be beneficial. For this, clinical trials based on large number of patients with optimal dose and lesser side effects have to be more in practice. Despite the clinical trials going on, there is need of better molecular models which can identify high risk population and new agents with better benefit having less side effects and improved biomarkers for treating breast cancer

    Rising burden of Hepatitis C Virus in hemodialysis patients

    Get PDF
    <p>Abstract</p> <p>Aim</p> <p>High prevalence of Hepatitis C virus (HCV) has been reported among the dialysis patients throughout the world. No serious efforts were taken to investigate HCV in patients undergoing hemodialysis (HD) treatment who are at great increased risk to HCV. HCV genotypes are important in the study of epidemiology, pathogenesis and reaction to antiviral therapy. This study was performed to investigate the prevalence of active HCV infection, HCV genotypes and to assess risk factors associated with HCV genotype infection in HD patients of Khyber Pakhtunkhwa as well as comparing this prevalence data with past studies in Pakistan.</p> <p>Methods</p> <p>Polymerase chain reaction was performed for HCV RNA detection and genotyping in 384 HD patients. The data obtained was compared with available past studies from Pakistan.</p> <p>Results</p> <p>Anti HCV antibodies were observed in 112 (29.2%), of whom 90 (80.4%) were HCV RNA positive. In rest of the anti HCV negative patients, HCV RNA was detected in 16 (5.9%) patients. The dominant HCV genotypes in HCV infected HD patients were found to be 3a (n = 36), 3b (n = 20), 1a (n = 16), 2a (n = 10), 2b (n = 2), 1b (n = 4), 4a (n = 2), untypeable (n = 10) and mixed (n = 12) genotype.</p> <p>Conclusion</p> <p>This study suggesting that i) the prevalence of HCV does not differentiate between past and present infection and continued to be elevated ii) HD patients may be a risk for HCV due to the involvement of multiple routes of infections especially poor blood screening of transfused blood and low standard of dialysis procedures in Pakistan and iii) need to apply infection control practice.</p

    Characterizing heart failure with preserved and reduced ejection fraction: An imaging and plasma biomarker approach.

    Get PDF
    IntroductionThe pathophysiology of heart failure with preserved ejection fraction (HFpEF) remains incompletely defined. We aimed to characterize HFpEF compared to heart failure with reduced ejection fraction (HFrEF) and asymptomatic hypertensive or non-hypertensive controls.Materials and methodsProspective, observational study of 234 subjects (HFpEF n = 140; HFrEF n = 46, controls n = 48, age 73±8, males 49%) who underwent echocardiography, cardiovascular magnetic resonance imaging (CMR), plasma biomarker analysis (panel of 22) and 6-minute walk testing (6MWT). The primary end-point was the composite of all-cause mortality and/or HF hospitalization.ResultsCompared to controls both HF groups had lower exercise capacity, lower left ventricular (LV) EF, higher LV filling pressures (E/E', B-type natriuretic peptide [BNP], left atrial [LA] volumes), more right ventricular (RV) systolic dysfunction, more focal and diffuse fibrosis and higher levels of all plasma markers. LV remodeling (mass/volume) was different between HFpEF (concentric, 0.68±0.16) and HFrEF (eccentric, 0.47±0.15); pConclusionsHFpEF is a distinct pathophysiological entity compared to age- and sex-matched HFrEF and controls. HFpEF and HFrEF are associated with similar adverse outcomes. Inflammation is common in both HF phenotypes but cardiomyocyte stretch/stress is greater in HFrEF
    • …
    corecore