5 research outputs found

    Development of a single energy balance model for prediction of temperatures inside a naturally ventilated greenhouse with polypropylene soil mulch

    Get PDF
    In this study, a semi-empirical dynamic model of energy balance was developed to predict temperatures (air, plants, greenhouse cover and soil) in a naturally ventilated greenhouse with a polypropylene mulch covering the soil in a Mediterranean climate. The model was validated using experimental data of 5 non-successive periods of 5 days throughout the crop season in the province of Almería (Spain). During the evaluation period, the transmissivity of the cover ranged between 0.44 and 0.80 depending on whitening, and the leaf area index of the tomato crops growing inside the greenhouse varied from LAI = 0.74 to 1.30 m2 m−2. The model mainly consists of a system of 6 non-linear differential equations of energy conservation at inside air, greenhouse plastic cover, polypropylene mulch and three layers of soil. We used multiple linear regressions to estimate the crop temperature in a simple way that allows a reduction in the number of parameters required as input. The main components of the energy balance in warm climate conditions are the solar radiation, the heat exchanged by natural ventilation and the heat stored in the soil. To improve the estimation of the heat exchanged by ventilation, different discharge coefficients were used for roof CdVR and side openings CdVS. Both coefficients changed throughout the time as a function of the height and opening angle of the windows and of the air velocity across the insect-proof screens. The model also used different wind effect coefficients Cw for Northeast or Southwest winds, to take into account the different obstacles (a neighbouring greenhouse at the south and a warehouse at the north). A linear regression of the wind direction angle θw was used as correction function for the volumetric ventilation flux G. The results showed that the accuracy of the model is affected mainly by errors in the cover transmissivity on cloudy days (when diffuse radiation prevails) and errors in the temperature of air exiting the greenhouse on windy days (when hot air stagnated near roof openings, that were closed by the climate controller to avoid wind damage). In general, the results of validation comparing calculated values with those measured on 25 days (with relative root mean square errors below 10%), show sufficient accuracy for the model to be used to estimate air, crop, plastic cover, polypropylene mulch and soil temperatures inside the greenhouse, and as a design tool to optimise the ventilation system characteristics and control settings

    Synthesis and Characterization of Magnetic Xerogel Monolith as an Adsorbent for As(V) Removal from Groundwater

    No full text
    Arsenic contamination of groundwater is still a global problem due to the toxicity at low dose on human health confirmed by epidemiological studies. Magnetic xerogel monoliths (MXs) were synthesized by the sol-gel polymerization using resorcinol, formaldehyde, alkaline catalyst and magnetite. The varying molar ratios of magnetite and resorcinol (M/R) in the gel were evaluated for As(V) removal from groundwater. The surface chemistry, structure and morphology of MXs related to arsenic adsorption were characterized by X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy and point of zero charge. Batch adsorption experiments were carried out to investigate the effects of Fe contents, initial pH and adsorbent dose on As(V) removal performance. The MXs with molar ratio of M/R at 0.15 gave the maximum As(V) adsorption capacity and removal with values of 62.8 µg/g and 86.7%, respectively. The adsorption data were well described by the Elovich equation of the kinetic model and the Freundlich isotherm. The thermodynamic studies demonstrated that the adsorption process was endothermic and spontaneous in nature. MXs showed to be a good alternative for As(V) removal from groundwater and achieving the efficient desorption, and thus fulfilled the Mexican standard for drinking water
    corecore