330 research outputs found

    Code Park: A New 3D Code Visualization Tool and IDE

    Get PDF
    We introduce Code Park, a novel tool for visualizing codebases in a 3D game-like environment. Code Park aims to improve a programmer\u27s understanding of an existing codebase in a manner that is both engaging and fun to be appealing especially for novice users such as students. It achieves these goals by laying out the codebase in a 3D park-like environment. Each class in the codebase is represented as a 3D room-like structure. Constituent parts of the class (variable, member functions, etc.) are laid out on the walls, resembling a syntax-aware wallpaper . The users can interact with the codebase using an overview, and a first-person viewer mode. They also can edit, compile and run code in this environment. We conducted three user studies to evaluate Code Park\u27s usability and suitability for organizing an existing project. Our results indicate that Code Park is easy to get familiar with and significantly helps in code understanding. Further, the users unanimously believed that Code Park was an engaging tool to work with

    Code Park: A New 3D Code Visualization Tool

    Full text link
    We introduce Code Park, a novel tool for visualizing codebases in a 3D game-like environment. Code Park aims to improve a programmer's understanding of an existing codebase in a manner that is both engaging and intuitive, appealing to novice users such as students. It achieves these goals by laying out the codebase in a 3D park-like environment. Each class in the codebase is represented as a 3D room-like structure. Constituent parts of the class (variable, member functions, etc.) are laid out on the walls, resembling a syntax-aware "wallpaper". The users can interact with the codebase using an overview, and a first-person viewer mode. We conducted two user studies to evaluate Code Park's usability and suitability for organizing an existing project. Our results indicate that Code Park is easy to get familiar with and significantly helps in code understanding compared to a traditional IDE. Further, the users unanimously believed that Code Park was a fun tool to work with.Comment: Accepted for publication in 2017 IEEE Working Conference on Software Visualization (VISSOFT 2017); Supplementary video: https://www.youtube.com/watch?v=LUiy1M9hUK

    Efficient Vision Transformer for Accurate Traffic Sign Detection

    Full text link
    This research paper addresses the challenges associated with traffic sign detection in self-driving vehicles and driver assistance systems. The development of reliable and highly accurate algorithms is crucial for the widespread adoption of traffic sign recognition and detection (TSRD) in diverse real-life scenarios. However, this task is complicated by suboptimal traffic images affected by factors such as camera movement, adverse weather conditions, and inadequate lighting. This study specifically focuses on traffic sign detection methods and introduces the application of the Transformer model, particularly the Vision Transformer variants, to tackle this task. The Transformer's attention mechanism, originally designed for natural language processing, offers improved parallel efficiency. Vision Transformers have demonstrated success in various domains, including autonomous driving, object detection, healthcare, and defense-related applications. To enhance the efficiency of the Transformer model, the research proposes a novel strategy that integrates a locality inductive bias and a transformer module. This includes the introduction of the Efficient Convolution Block and the Local Transformer Block, which effectively capture short-term and long-term dependency information, thereby improving both detection speed and accuracy. Experimental evaluations demonstrate the significant advancements achieved by this approach, particularly when applied to the GTSDB dataset

    Investigating the effects of using different types of SiO2 nanoparticles on the mechanical properties of binary blended concrete.

    Get PDF
    The aim of this study was to assess the effects of two different types of SiO2 nanoparticles (N and M series) with different ratios on the workability and compressive strength of developed binary blended concretes cured in water and lime solution as two different curing media. N and M series SiO2 nanoparticles with an average size of 15 nm were used as obtained from the suppliers. Fresh and hardened concretes incorporating 0.5%, 1.0%, 1.5% and 2.0% of N and 2% of M series nanoparticles with constant water to binder ratio and aggregate content were made and tested. Fresh mixtures were tested for workability and hardened concretes were tested for compressive strength at 7, 28 and 90 days of curing. Fresh concrete test results showed that the workability of binary blends was reduced in the presence of both types of SiO2 nanoparticles. Hardened concrete test results revealed that the optimal replacement level of cement by N series of SiO2 nanoparticles for producing concrete with considerably improved strength was set at 1.0 wt.% after curing in water. However, the ultimate strengths of binary blended concretes were gained at 2.0 wt.% replacement of cement by both series after curing in lime solution. It is concluded that SiO2 nanoparticles play significant roles in mechanical properties of concrete by formation of additional calcium silicate hydrate gel during treatment, which played an important role in raising highly the compressive strength of binary blends. The current study sheds light on the implications of nanotechnology in nano-engineering of concrete

    Experimental and Numerical Simulation of the Microcrack Coalescence Mechanism in Rock-Like Material

    No full text
    Скальные породы и скалоподобные материалы часто разрушаются при сжатии вследствие инициирования, распространения и слияния ранее возникших микротрещин. Выполнены экспериментальные и численные исследования механизма процесса слияния микротрещин в материалах типа скальных пород. Экспериментальные исследования включают в себя испытания на одноосное сжатие образцов, изготовленных из смеси цемента марки портланд пуццолан, слюды и воды..Скельні породи і скелеподібні матеріали часто руйнуються при стисненні внаслідок ініціювання, поширення і злиття мікротріщин, що з’явилися раніше. Виконано експериментальні і числові дослідження механізму процесу злиття мікротріщин у матеріалах типу скельних порід. Експериментальні дослідження включають випробування на одновісний стиск зразків, виготовлених із суміші цементу марки портланд пуцолан, слюди і води

    Risk-Cost Optimized Maintenance Strategy for Steel Bridge Subjected to Deterioration

    Get PDF
    This paper aims to develop a deteriorated bridge maintenance strategy that ensures the safe operation of steel structures and minimizes the total risk. Five common failure modes are considered for the deteriorated bridge: flexure, shear, deflection, fatigue failure for girder, and chloride attack for the concrete deck. Time-dependent and system reliability analyses are carried out to find the probability of failure under these failure modes. Risk-cost optimization is then used to determine the maintenance strategy. This method was applied to a working example. It was found that the developed maintenance strategy can predict when, where, and what to maintain for a bridge to ensure its safe and serviceable operation during its lifespan. The proposed methodology can help structural engineers and asset managers repair and maintain bridges under deterioration

    National and sub-national age-sex specific and cause-specific mortality and disability-adjusted life years (DALYs) attributable to household air pollution from solid cookfuel use (HAP) in Iran, 1990–2013

    Get PDF
    National and sub-national mortality, years of life lost due to premature mortality (YLLs), years lived with disability (YLDs) and disability-adjusted life years (DALYs) for household air pollution from solid cookfuel use (HAP) in Iran, 1990–2013 were estimated based on the Global Burden of Disease Study 2013 (GBD 2013). The burden of disease attributable to HAP was quantified by the comparative risk assessment method using four inputs: (1) exposure to HAP, (2) the theoretical minimum risk exposure level (TMREL), (3) exposure-response relationships of related causes (4) disease burden of related causes. All across the country, solid fuel use decreased from 5.26% in 1990 to 0.15% in 2013. The drastic reduction of solid fuel use leaded to DALYs attributable to HAP fell by 97.8% (95% uncertainty interval 97.7–98.0%) from 87,433 (51072–144303) in 1990 to 1889 (1016–3247) in 2013. Proportion of YLLs in DALYs from HAP decreased from 95.7% in 1990 to 86.6% in 2013. Contribution of causes in the attributable DALYs was variable during the study period and in 2013 was in the following order: ischemic heart disease for 43.4%, chronic obstructive pulmonary disease for 24.7%, hemorrhagic stroke for 9.7%, lower respiratory infections for 9.3%, ischemic stroke for 7.8%, lung cancer for 3.4% and cataract for 1.8%. Based on the Gini coefficient, the spatial inequality of the disease burden from HAP increased during the study period. The remained burden of disease was relatively scarce and it mainly occurred in seven southern provinces. Further reduction of the disease burden from HAP as well as compensation of the increasing spatial inequality in Iran could be attained through an especial plan for providing cleaner fuels in the southern provinces

    Utilizing UAV and 3D Computer Vision for Visual Inspection of a Large Gravity Dam

    Get PDF
    Dams are a critical infrastructure system for many communities, but they are also one of the most challenging to inspect. Dams are typically very large and complex structures, and the result is that inspections are often time-intensive and require expensive, specialized equipment and training to provide inspectors with comprehensive access to the structure. The scale and nature of dam inspections also introduce additional safety risks to the inspectors. Unmanned aerial vehicles (UAV) have the potential to address many of these challenges, particularly when used as a data acquisition platform for photogrammetric three-dimensional (3D) reconstruction and analysis, though the nature of both UAV and modern photogrammetric methods necessitates careful planning and coordination for integration. This paper presents a case study on one such integration at the Brighton Dam, a large-scale concrete gravity dam in Maryland, USA. A combination of multiple UAV platforms and multi-scale photogrammetry was used to create two comprehensive and high-resolution 3D point clouds of the dam and surrounding environment at intervals. These models were then assessed for their overall quality, as well as their ability to resolve flaws and defects that were artificially applied to the structure between inspection intervals. The results indicate that the integrated process is capable of generating models that accurately render a variety of defect types with sub-millimeter accuracy. Recommendations for mission planning and imaging specifications are provided as well
    corecore