136 research outputs found

    Hopf-cyclic homology and cohomology with coefficients

    Get PDF
    Following the idea of an invariant differential complex, we construct general-type cyclic modules that provide the common denominator of known cyclic theories. The cyclicity of these modules is governed by Hopf-algebraic structures. We prove that the existence of a cyclic operator forces a modification of the Yetter-Drinfeld compatibility condition leading to the concept of a stable anti-Yetter-Drinfeld module. This module plays the role of the space of coefficients in the thus obtained cyclic cohomology of module algebras and coalgebras, and the cyclic homology and cohomology of comodule algebras. Along the lines of Connes and Moscovici, we show that there is a pairing between the cyclic cohomology of a module coalgebra acting on a module algebra and closed 0-cocycles on the latter. The pairing takes values in the usual cyclic cohomology of the algebra. Similarly, we argue that there is an analogous pairing between closed 0-cocycles of a module coalgebra and the cyclic cohomology of a module algebra

    Curvature in Noncommutative Geometry

    Full text link
    Our understanding of the notion of curvature in a noncommutative setting has progressed substantially in the past ten years. This new episode in noncommutative geometry started when a Gauss-Bonnet theorem was proved by Connes and Tretkoff for a curved noncommutative two torus. Ideas from spectral geometry and heat kernel asymptotic expansions suggest a general way of defining local curvature invariants for noncommutative Riemannian type spaces where the metric structure is encoded by a Dirac type operator. To carry explicit computations however one needs quite intriguing new ideas. We give an account of the most recent developments on the notion of curvature in noncommutative geometry in this paper.Comment: 76 pages, 8 figures, final version, one section on open problems added, and references expanded. Appears in "Advances in Noncommutative Geometry - on the occasion of Alain Connes' 70th birthday

    Quantum Bundle Description of the Quantum Projective Spaces

    Full text link
    We realise Heckenberger and Kolb's canonical calculus on quantum projective (n-1)-space as the restriction of a distinguished quotient of the standard bicovariant calculus for Cq[SUn]. We introduce a calculus on the quantum (2n-1)-sphere in the same way. With respect to these choices of calculi, we present quantum projective (N-1)-space as the base space of two different quantum principal bundles, one with total space Cq[SUn], and the other with total space Cq[S^(2n-1)]. We go on to give Cq[CP^n] the structure of a quantum framed manifold. More specifically, we describe the module of one-forms of Heckenberger and Kolb's calculus as an associated vector bundle to the principal bundle with total space Cq[SUn]. Finally, we construct strong connections for both bundles.Comment: 33 pages; minor changes, to appear in Comm. Math. Phy

    Imaging in situ breast carcinoma (with or without an invasive component) with technetium-99m pentavalent dimercaptosuccinic acid and technetium-99m 2-methoxy isobutyl isonitrile scintimammography

    Get PDF
    INTRODUCTION: The aim of the study was to retrospectively define specific features of the technetium-99m pentavalent dimercaptosuccinic acid ((99m)Tc-(V)DMSA) and technetium-99m 2-methoxy isobutyl isonitrile ((99m)Tc-Sestamibi [(99m)Tc-MIBI]) distribution in ductal breast carcinoma in situ and lobular breast carcinoma in situ (DCIS/LCIS), in relation to mammographic, histological and immunohistochemical parameters. MATERIALS AND METHODS: One hundred and two patients with suspicious palpation or mammographic findings were submitted preoperatively to scintimammography (a total of 72 patients with (99m)Tc-(V)DMSA and a total of 75 patients with (99m)Tc-Sestamibi, 45 patients receiving both radiotracers). Images were acquired at 10 min and 60 min, and were evaluated for a pattern of diffuse radiotracer accumulation. The tumor-to-background ratios were correlated (T-pair test) with mammographic, histological and immunohistochemical characteristics. RESULTS: Histology confirmed malignancy in 46/102 patients: 20/46 patients had DCIS/LCIS, with or without coexistent invasive lesions, and 26/46 patients had isolated invasive carcinomas. Diffuse (99m)Tc-(V)DMSA accumulation was noticed in 18/19 cases and (99m)Tc-Sestamibi in 6/13 DCIS/LCIS cases. Epithelial hyperplasia demonstrated a similar accumulation pattern. The sensitivity, specificity, accuracy, positive predictive value and negative predictive value for each tracer were calculated. Solely for (99m)Tc-(V)DMSA, the tumor-to-background ratio was significantly higher at 60 min than at 10 min and the diffuse uptake was significantly associated with suspicious microcalcifications, with the cell proliferation index ≥ 40% and with c-erbB-2 ≥ 10%. CONCLUSION: (99m)Tc-(V)DMSA showed high sensitivity and (99m)Tc-Sestamibi showed high specificity in detecting in situ breast carcinoma ((99m)Tc-(V)DMSA especially in cases with increased cell proliferation), and these radiotracers could provide clinicians with preoperative information not always obtainable by mammography

    On the algebraic index for riemannian \'etale groupoids

    Get PDF
    In this paper we construct an explicit quasi-isomorphism to study the cyclic cohomology of a deformation quantization over a riemannian \'etale groupoid. Such a quasi-isomorphism allows us to propose a general algebraic index problem for riemannian \'etale groupoids. We discuss solutions to that index problem when the groupoid is proper or defined by a constant Dirac structure on a 3-dim torus.Comment: 19 page

    Differential and holomorphic differential operators on noncommutative algebras

    Get PDF
    Abstract This paper deals with sheaves of differential operators on noncommutative algebras, in a manner related to the classical theory of D-modules. The sheaves are defined by quotienting the tensor algebra of vector fields (suitably deformed by a covariant derivative). As an example we can obtain enveloping algebra like relations for Hopf algebras with differential structures which are not bicovariant. Symbols of differential operators are defined, but not studied. These sheaves are shown to be in the center of a category of bimodules with flat bimodule covariant derivatives. Also holomorphic differential operators are considered

    The utility of pathway selective estrogen receptor ligands that inhibit nuclear factor-κB transcriptional activity in models of rheumatoid arthritis

    Get PDF
    Rheumatoid arthritis (RA) is a chronic inflammatory disease that produces synovial proliferation and joint erosions. The pathologic lesions of RA are driven through the production of inflammatory mediators in the synovium mediated, in part, by the transcription factor NF-κB. We have identified a non-steroidal estrogen receptor ligand, WAY-169916, that selectively inhibits NF-κB transcriptional activity but is devoid of conventional estrogenic activity. The activity of WAY-169916 was monitored in two models of arthritis, the HLA-B27 transgenic rat and the Lewis rat adjuvant-induced model, after daily oral administration. In both models, a near complete reversal in hindpaw scores was observed as well as marked improvements in the histological scores. In the Lewis rat adjuvant model, WAY-169916 markedly suppresses the adjuvant induction of three serum acute phase proteins: haptoglobin, α1-acid glycoprotein (α1-AGP), and C-reactive protein (CRP). Gene expression experiments also demonstrate a global suppression of adjuvant-induced gene expression in the spleen, liver, and popliteal lymph nodes. Finally, WAY-169916 was effective in suppressing tumor necrosis factor-α-mediated inflammatory gene expression in fibroblast-like synoviocytes isolated from patients with RA. Together, these data suggest the utility of WAY-169916, and other compounds in its class, in treating RA through global suppression of inflammation via selective blockade of NF-κB transcriptional activity

    Concanavalin A/IFN-Gamma Triggers Autophagy-Related Necrotic Hepatocyte Death through IRGM1-Mediated Lysosomal Membrane Disruption

    Get PDF
    Interferon-gamma (IFN-γ), a potent Th1 cytokine with multiple biological functions, can induce autophagy to enhance the clearance of the invading microorganism or cause cell death. We have reported that Concanavalin A (Con A) can cause autophagic cell death in hepatocytes and induce both T cell-dependent and -independent acute hepatitis in immunocompetent and immunodeficient mice, respectively. Although IFN-γ is known to enhance liver injury in Con A-induced hepatitis, its role in autophagy-related hepatocyte death is not clear. In this study we report that IFN-γ can enhance Con A-induced autophagic flux and cell death in hepatoma cell lines. A necrotic cell death with increased lysosomal membrane permeabilization (LMP) is observed in Con A-treated hepatoma cells in the presence of IFN-γ. Cathepsin B and L were released from lysosomes to cause cell death. Furthermore, IFN-γ induces immunity related GTPase family M member 1(IRGM1) translocation to lysosomes and prolongs its activity in Con A-treated hepatoma cells. Knockdown of IRGM1 inhibits the IFN-γ/Con A-induced LMP change and cell death. Furthermore, IFN-γ−/− mice are resistant to Con A-induced autophagy-associated necrotic hepatocyte death. We conclude that IFN-γ enhances Con A-induced autophagic flux and causes an IRGM1-dependent lysosome-mediated necrotic cell death in hepatocytes

    Continued 26S proteasome dysfunction in mouse brain cortical neurons impairs autophagy and the Keap1-Nrf2 oxidative defence pathway

    Get PDF
    The ubiquitin–proteasome system (UPS) and macroautophagy (autophagy) are central to normal proteostasis and interdependent in that autophagy is known to compensate for the UPS to alleviate ensuing proteotoxic stress that impairs cell function. UPS and autophagy dysfunctions are believed to have a major role in the pathomechanisms of neurodegenerative disease. Here we show that continued 26S proteasome dysfunction in mouse brain cortical neurons causes paranuclear accumulation of fragmented dysfunctional mitochondria, associated with earlier recruitment of Parkin and lysine 48-linked ubiquitination of mitochondrial outer membrane (MOM) proteins, including Mitofusin-2. Early events also include phosphorylation of p62/SQSTM1 (p62) and increased optineurin, as well as autophagosomal LC3B and removal of some mitochondria, supporting the induction of selective autophagy. Inhibition of the degradation of ubiquitinated MOM proteins with continued 26S proteasome dysfunction at later stages may impede efficient mitophagy. However, continued 26S proteasome dysfunction also decreases the levels of essential autophagy proteins ATG9 and LC3B, which is characterised by decreases in their gene expression, ultimately leading to impaired autophagy. Intriguingly, serine 351 phosphorylation of p62 did not enhance its binding to Keap1 or stabilise the nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factor in this neuronal context. Nrf2 protein levels were markedly decreased despite transcriptional activation of the Nrf2 gene. Our study reveals novel insights into the interplay between the UPS and autophagy in neurons and is imperative to understanding neurodegenerative disease where long-term proteasome inhibition has been implicated

    Caspase 8 and maspin are downregulated in breast cancer cells due to CpG site promoter methylation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epigenetic changes associated with promoter DNA methylation results in silencing of several tumor suppressor genes that lead to increased risk for tumor formation and for progression of the cancer.</p> <p>Methods</p> <p>Methylation specific PCR (MSP) and bisulfite sequencing were used for determination of proapoptotic gene Caspase 8 (CASP8) and the tumor suppressor gene maspin promoter methylation in four breast cancer and two non-tumorigenic breast cell lines. Involvement of histone H3 methylation in those cell lines were examined by CHIP assay.</p> <p>Results</p> <p>The CpG sites in the promoter region of CASP8 and maspin were methylated in all four breast cancer cell lines but not in two non-tumorigenic breast cell lines. Demethylation agent 5-aza-2'-deoxycytidine (5-aza-dc) selectively inhibits DNA methyltransferases, DNMT3a and DNMT3b, and restored CASP8 and maspin gene expression in breast cancer cells. 5-aza-dc also reduced histone H3k9me2 occupancy on CASP8 promoter in SKBR3cells, but not in MCF-7 cells. Combination of histone deacetylase inhibitor Trichostatin A (TSA) and 5-aza-dc significant decrease in nuclear expression of Di-methyl histone H3-Lys27 and slight increase in acetyl histone H3-Lys9 in MCF-7 cells. CASP8 mRNA and protein level in MCF-7 cells were increased by the 5-aza-dc in combination with TSA. Data from our study also demonstrated that treatment with 5-FU caused a significant increase in unmethylated CASP8 and in CASP8 mRNA in all 3 cancer lines.</p> <p>Conclusions</p> <p>CASP8 and maspin expression were reduced in breast cancer cells due to promoter methylation. Selective application of demethylating agents could offer novel therapeutic opportunities in breast cancer.</p
    corecore