12,272 research outputs found

    Dark Matter in B-L Extended MSSM Models

    Full text link
    We analyze the dark matter problem in the context of supersymmetric U(1)_{B-L} model. In this model, the lightest neutalino can be the B-L gaugino widetilde {Z}_{B-L} or the extra Higgsinos widetilde{chi}_{1,2} dominated. We compute the thermal relic abundance of these particles and show that, unlike the LSP in MSSM, they can account for the observed relic abundance with no conflict with other phenomenological constraints. The prospects for their direct detection, if they are part of our galactic halo, are also discussed.Comment: 11 pages, 9 figures. Published versio

    Relic Neutralino Density in Scenarios with Intermediate Unification Scale

    Get PDF
    We analyse the relic neutralino density in supersymmetric models with an intermediate unification scale. In particular, we present concrete cosmological scenarios where the reheating temperature is as small as O\cal{O} 110001 - 1000 MeV). When this temperature is associated to the decay of moduli fields producing neutralinos, we show that the relic abundance increases considerably with respect to the standard thermal production. Thus the neutralino becomes a good dark matter candidate with 0.1\lsim \Omega h^2 \lsim 0.3, even for regions of the parameter space where large neutralino-nucleon cross sections, compatible with current dark matter experiments, are present. This is obtained for intermediate scales MI10111014M_I\sim 10^{11}-10^{14} GeV, and moduli masses mϕ1001000m_\phi\sim 100-1000 GeV. On the other hand, when the above temperature is associated to the decay of an inflaton field, the relic abundance is too small.Comment: Latex, 11 pages, 2 figure

    Examining the cancellation mechanism of neutron EDM in a model with dilaton-dominated susy breaking

    Full text link
    We examine the cancellation mechanism between the different contributions to the electric dipole moment of the neutron in a model with dilaton-dominated SUSY breaking. We find these accidental cancellations occur at few points in parameter space. For a wide region of this space we must constrain the phase of μ\mu to be of order 10110^{-1} and have the phases of AA and μ\mu strongly correlated in order to have small neutron EDM. Moreover, we consider the indirect CP violation parameter ϵ\epsilon in this region where the electric dipole moment is less than the experimental limit and find that we can generate ϵ\epsilon of order 10610^{-6}

    Sterile neutrino dark matter in BLB-L extension of the standard model and galactic 511 keV line

    Get PDF
    Sterile right-handed neutrinos can be naturally embedded in a low scale gauged U(1)BLU(1)_{B-L} extension of the standard model. We show that, within a low reheating scenario, such a neutrino is an interesting candidate for dark matter. We emphasize that if the neutrino mass is of order of MeV, then it accounts for the measured dark matter relic density and also accommodates the observed flux of 511 keV photons from the galactic bulge.Comment: 10 pages, 1 figure, references added, final version appeared in JCA

    Like-sign dimuon charge asymmetry in Randall-Sundurm model

    Full text link
    We confirm that in order to account for the recent D\O\ result of large like-sign dimuon charge asymmetry, a considerable large new physics effect in Γ12s\Gamma_{12}^s is required in addition to a large CP violating phase in BsBˉsB_s -\bar{B}_s mixing. In the Randall-Sundrum model of warped geometry, where the fermion fields reside in the bulk, new sources of flavor and CP violation are obtained. We analyze the like-sign dimuon asymmetry in this class of model, as an example of the desired new physics. We show that the wrong charge asymmetry, aslsa_{sl}^s, which is related to the dimuon asymmetry, is significantly altered compared to the Standard Model value. However, experimental limits from ΔMs\Delta M_s, ΔΓs\Delta\Gamma_s as well as KK mixing and electroweak corrections constrain it to be greater than a σ\sigma away from its experimental average value. This model cannot fully account for the D\O\ anomaly due to its inability to generate sufficient new contribution to the width difference Γ12s\Gamma^s_{12}, even though the model can generate large contribution to the mass difference M12sM^s_{12}.Comment: 20 pages, 9 figures, discussions and references added, accepted for publication in Physical Review

    Low scale B-L extension of the Standard Model at the LHC

    Get PDF
    The fact that neutrinos are massive indicates that the Standard Model (SM) requires extension. We propose a low energy (<TeV) B-L extension of the SM, which is based on the gauge group SU(3)_C x SU(2)_L x U(1)_Y x U(1)_{B-L}. We show that this model provides a natural explanation for the presence of three right-handed neutrinos in addition to an extra gauge boson and a new scalar Higgs. Therefore, it can lead to very interesting phenomenological implications different from the SM results which can be tested at the LHC. Also we analyze the muon anomalous magnetic moment in this class of models. We show that one-loop with exchange Z' may give dominant new contribution ~ few x 10^{-11}.Comment: 12 page

    The alternate GNB3 splice variant, Gβ3s, exhibits an altered signalling response to EGF stimulation, which leads to enhanced cell migration

    Get PDF
    It has recently been reported that the duplication of the GNB3 gene has been shown to be directly linked to an obesity phenotype, both in humans and also in a humanised mouse model. Moreover, the common human GNB3 c.825C&gt;T polymorphism (rs5443) causes this ubiquitously expressed gene to be aberrantly spliced approximately 50% of the time leading to the production of both a normal Gβ3 protein and a truncated, possibly less stable subunit, known as Gβ3s. The presence of the GNB3 825T allele has previously been shown to be associated with predisposition to hypertension, obesity, various cancers, Alzheimers, age related cognitive function, erectile dysfunction as well as a marker for pharmacogenetic drug action. Great controversy, however, currently exists as to whether these phenotypes associated with the 825T allele are a) mainly due to the presence of the smaller, possibly more active, Gβ3s subunit or b) merely down to the haploinsufficiency of the normal GNB3 transcript, due to its frequent aberrant splicing. In order to try and address these two conflicting hypothesis, we report on the identification and characterisation of signalling alterations unique to the presence of Gβ3s protein subunit. Moreover we also show the physiological consequences associated with altered signalling, directly induced by the Gβ3s subunit. For this, we used both an EBV transformed lymphoblast cell line homozygote for GNB3 825T/825T (TT) and a stable Gβ3s expressing recombinant COS-7 clone. In both of these cell lines that express the Gβ3s subunit, we found enhanced cytosolic calcium influx upon stimulation with EGF, TGFα and VEGF ligands, as compared to “normal” GNB3 controls with the 825C/825C (CC) genotype. This aberrant calcium influx also led to an increase in ERK, but not AKT1, phosphorylation. Despite the lack of AKT1 activation, we paradoxically observed a significant increase in phosphorylation of its downstream substrates, namely mTOR and p70S6k (KS6B2). Moreover we observed a decrease in phospho FoxO3a only in Gβ3s expressing cells, but not in the “normal” GNB3 (CC) control cell line. The presence of the Gβ3s subunit also appeared to alter the distinct localisation patterns of both Foxo3a and AKT1, while also increasing the colocalisation of mTOR and p70S6K. Subsequent growth factor stimulation studies revealed that EGF treatment, of Gβ3s expressing cells, appeared to cause a significant decrease in cAMP levels, which, in turn resulted in both enhanced caveolin-1a phosphorylation, and an increase in actin stress fibre formation. The identification of these distinct Gβ3s specific signalling alterations were indicative of a more aggressive migratory phenotype. This led us to further investigate and confirm that the presence of the Gβ3s subunit also appears to cause significantly enhanced migration and robust scratch wound healing kinetics, as compared to cells harbouring only the normal copy of the gene. These data therefore present convincing evidence that the Gβ3s subunit is stable, functional and its presence can significantly alter signalling pathways, in different cell types

    Supersymmetric origin of a low aJ/psia_{J/psi} CP asymmetry

    Full text link
    We show that general Minimal Supersymmetric extensions of the Standard Model (MSSM) allow for a CP asymmetry in B --> J/psi K(S) well bellow the SM expectations with dominant Supersymmetric contributions to epsilon_K and epsilon'/epsilon. Indeed, we provide an explicit example of an MSSM with non-universal soft breaking terms fully consistent with the low results of this asymmetry recently announced by Babar and Belle collaborations.Comment: 6 pages, no figures. Reference added, typos correcte

    Muon Anomalous Magnetic Moment and mu -> e gamma in B-L Model with Inverse Seesaw

    Full text link
    We study the anomalous magnetic moment of the muon, a_\mu, and lepton flavor violating decay \mu -> e \gamma in TeV scale B-L extension of the Standard Model (SM) with inverse seesaw mechanism. We show that the B-L contributions to a_\mu are severely constrained, therefore the SM contribution remains intact. We also emphasize that the current experimental limit of BR(\mu -> e \gamma) can be satisfied for a wide range of parameter space and it can be within the reach of MEG experiment.Comment: 10 pages, 4 Figure
    corecore