68 research outputs found

    Advanced Sintering of Nano-Ceramic Materials

    Get PDF

    Mechanical Characterization of Cryomilled Al Powder Consolidated by High-Frequency Induction Heat Sintering

    Get PDF
    In the present investigation, an aluminum powder of 99.7% purity with particle size of ~45 µm was cryomilled for 7 hours. The produced powder as characterized by scanning, transmission electron microscopy, and X-ray diffraction gave a particle size of ~1 µm and grain (crystallite) size of 23±6 nm. This powder, after degassing process, was consolidated using high-frequency induction heat sintering (HFIHS) at various temperatures for short periods of time of 1 to 3 minutes. The present sintering conditions resulted in solid compact with nanoscale grain size (<100 nm) and high compact density. The mechanical properties of a sample sintered at 773 K for 3 minutes gave a compressive yield and ultimate strength of 270 and 390 MPa, respectively. The thermal stability of grain size nanostructured compacts is in agreement with the kinetics models based on the thermodynamics effects

    Synthesis, characterization, and antimicrobial properties of novel double layer nanocomposite electrospun fibers for wound dressing applications

    Get PDF
    Herein, novel hybrid nanomaterials were developed for wound dressing applications with antimicrobial properties. Electrospinning was used to fabricate a double layer nanocomposite nanofibrous mat consisting of an upper layer of poly(vinyl alcohol) and chitosan loaded with silver nanoparticles (AgNPs) and a lower layer of polyethylene oxide (PEO) or polyvinylpyr- rolidone (PVP) nanofibers loaded with chlorhexidine (as an antiseptic). The top layer containing AgNPs, whose purpose was to protect the wound site against environmental germ invasion, was prepared by reducing silver nitrate to its nanoparticulate form through interaction with chitosan. The lower layer, which would be in direct contact with the injured site, contained the antibi- otic drug needed to avoid wound infections which would otherwise interfere with the healing process. Initially, the upper layer was electrospun, followed sequentially by electrospinning the second layer, creating a bilayer nanofibrous mat. The morphology of the nanofibrous mats was studied by scanning electron microscopy and transmission electron microscopy, showing successful nanofiber production. X-ray diffraction confirmed the reduction of silver nitrate to AgNPs. Fourier transform infrared spectroscopy showed a successful incorporation of the material used in the produced nanofibrous mats. Thermal studies carried out by thermogravi- metric analysis indicated that the PVP–drug-loaded layer had the highest thermal stability in comparison to other fabricated nanofibrous mats. Antimicrobial activities of the as-synthesized nanofibrous mats against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans were determined using disk diffusion method. The results indicated that the PEO–drug-loaded mat had the highest antibacterial activity, warranting further attention for numerous wound-healing applications.QUST-CAS-SPR-14\15-

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    Get PDF
    Background Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide.Methods A multimethods analysis was performed as part of the GlobalSurg 3 study-a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital.Findings Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3.85 [95% CI 2.58-5.75]; p&lt;0.0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63.0% vs 82.7%; OR 0.35 [0.23-0.53]; p&lt;0.0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer.Interpretation Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised

    Transient liquid phase bonding of magnesium alloys AZ31 using nickel coatings and high frequency induction heat sintering

    Get PDF
    Transient liquid phase (TLP) bonding process was applied to join magnesium alloy AZ31 samples with minimum microstructural changes. The magnesium samples were coated by 5 μm nickel prior to the TLP bonding. Bonding conditions of 8 MPa uniaxial pressure and 520 °C bonding temperature were applied for all bonds at various bonding times. The microstructure across the joint regions was examined as a function of bonding time (5–60 min). Investigating the change in Ni contents was examined by EDS line scan. It was noticed that Ni coating could not be observed by SEM for bonds made at 30 and 60 min due to complete dissolution of the Ni coating. Second phase particles containing Mg2Ni intermetallics were observed by X-ray Photoelectron Spectroscopy (XPS) near the joint region. The shear strength of the bonds initially increases with the increase in bonding time till 20 min. On the other hand, with bonding times over 20 min the shear strength decreases. Therefore the optimum bonding time at the conditions applied was concluded to be 20 min

    Load bearing enhancement of pin joined composite laminates using electrospun polyacrylonitrile nanofiber mats

    Get PDF
    International audiencePolyacrylonitrile (PAN) nanofibers were produced by an electrospinning technique and directly deposited onto carbon fabric to improve the load bearing strength of pin joined composite laminates. Two types of specimens, virgin laminates and nano-modified laminates, were prepared. A modified carbon fiber reinforced polymer (CFRP) laminate was fabricated by interleaving electrospun nanofibers at all of the interlayers of an eight-ply woven carbon fiber fabric. The load bearing test results of the pin joined laminates indicated the electrospun PAN nanofibers increased the load bearing strength by 18.9%. In addition, three point bending tests were also conducted to investigate the flexural modulus and flexural strength of both types of laminates. The flexural modulus and flexural strength also increased by 20.9% and 55.91%, respectively

    Fabrication and characterization of silver nanostructures conformal coating layer onto electrospun N6 nanofibers with improved physical properties

    No full text
    In this communication, colloidal silver (Ag) nanostructures were synthesized and deposited directly onto electrospun nylon 6 (N6) fibers without using surface modifier in the form of an ultrathin conformal coating layer via a hydrothermal treatment. The morphological, structural, and thermal properties of the Ag/N6 nanocomposite membranes were analyzed by field-emission scanning electron microscopy (FESEM), X-ray diffraction, X-ray photoelectron spectroscopy, and differential scanning calorimetry (DSC). FESEM imaging showed that the Ag coating on individual N6 nanofibers was continuous, uniform, and compact. A DSC study of the nanocomposites illustrated a strong interfacial adhesion of the Ag layer with N6 nanofiber surfaces via strong hydrogen bonds. A possible mechanism for hydrogen bond formation during the hydrothermal process was proposed. Further, it was found that the transition of the meta-stable gamma-form into the thermodynamically more stable alpha-form of N6 structure was achieved; therefore, the hydrothermal process did not cause chain degradation

    Extraction of Novel Effective Nanocomposite Photocatalyst from Corn Stalk for Water Photo Splitting under Visible Light Radiation

    No full text
    Novel (Ca, Mg)CO3&SiO2 NPs-decorated multilayer graphene sheets could be successfully prepared from corn stalk pith using a simple alkaline hydrothermal treatment process followed by calcination in an inert atmosphere. The produced nanocomposite was characterized by SEM, EDX, TEM, FTIR, and XRD analytical techniques, which confirm the formation of multilayer graphene sheets decorated by inorganic nanoparticles. The nanocomposite shows efficient activity as a photocatalyst for water-splitting reactions under visible light. The influence of preparation parameter variations, including the alkaline solution concentration, hydrothermal temperature, reaction time, and calcination temperature, on the hydrogen evolution rate was investigated by preparing many samples at different conditions. The experimental work indicated that treatment of the corn stalk pith hydrothermally by 1.0 M KOH solution at 170 °C for 3 h and calcinating the obtained solid at 600 °C results in the maximum hydrogen production rate. A value of 43.35 mmol H2/gcat.min has been obtained associated with the energy-to-hydrogen conversion efficiency of 9%. Overall, this study opens a new avenue for extracting valuable nanocatalysts from biomass wastes to be exploited in hot applications such as hydrogen generation from water photo-splitting under visible light radiation

    Methylene Blue Dye as Photosensitizer for Scavenger-Less Water Photo Splitting: New Insight in Green Hydrogen Technology

    No full text
    In this study, hydrogen generation was performed by utilizing methylene blue dye as visible-light photosensitizer while the used catalyst is working as a transfer bridge for the electrons to H+/H2 reaction. Silica NPs-incorporated TiO2 nanofibers, which have a more significant band gap and longer electrons lifetime compared to pristine TiO2, were used as a catalyst. The nanofibers were prepared by electrospinning of amorphous SiO2 NPs/titanium isopropoxide/poly (vinyl acetate)/N, N-dimethylformamide colloid. Physicochemical characterizations confirmed the preparation of well morphology SiO2–TiO2 nanofibers with a bandgap energy of 3.265 eV. Under visible light radiation, hydrogen and oxygen were obtained in good stoichiometric rates (9.5 and 4.7 mL/min/gcat, respectively) without any considerable change in the dye concentration, which proves the successful exploitation of the dye as a photosensitizer. Under UV irradiation, SiO2 NPs incorporation distinctly enhanced the dye photodegradation, as around 91 and 94% removal efficiency were obtained from TiO2 nanofibers containing 4 and 6 wt% of the used dopant, respectively, within 60 min
    • …
    corecore