877 research outputs found

    Tip110 Regulates the Cross Talk between p53 and Hypoxia-Inducible Factor 1α under Hypoxia and Promotes Survival of Cancer Cells

    Get PDF
    Hypoxia often occurs under various physiological and pathophysiological conditions, including solid tumors; it is linked to malignant transformation, metastatic progression, and treatment failure or resistance. Tip110 protein plays important roles in several known physiological and pathophysiological processes, including cancers. Thus, in the present study we investigated the regulation of Tip110 expression under hypoxia. Hypoxia led to Tip110 protein degradation through the ubiquitin-proteasome system. Under hypoxia, Tip110 stabilized p53, which in return destabilized Tip110. In addition, Tip110 regulated hypoxia-inducible factor 1α (HIF-1α), likely through enhancement of its protein stability. Furthermore, Tip110 upregulated p300, a known coactivator for both p53 and HIF-1α. Expression of a p53(22/23) mutant deficient in p300 binding accelerated Tip110 degradation under hypoxia. Tip110 knockdown resulted in the inhibition of cell proliferation and cell death in the presence of p53. Finally, significantly less Tip110, p53, and HIF-1α was detected in the hypoxic region of bone metastasis tumors in a mouse model of human melanoma cells. Taken together, these results suggest Tip110 is an important mediator in the cross talk between p53 and HIF-1α in response to hypoxic stress

    Cancer-associated osteoclast differentiation takes a good look in the miR(NA)ror

    Get PDF
    Tumor-bone cell interactions are critical for the development of metastasis-related osteolytic bone destruction. In this issue of Cancer Cell, Ell and colleagues show how a discrete miRNA network regulates osteoclastogenesis during breast cancer bone metastasis. A signature of upregulated miRNAs may have diagnostic and therapeutic implications for bone metastases

    Prostaglandin E2 enhances long-term repopulation but does not permanently alter inherent stem cell competitiveness

    Get PDF
    Hematopoietic stem cell (HSC) transplantation is a lifesaving therapy for malignant and nonmalignant hematologic diseases and metabolic disorders. Although successful, hematopoietic transplantation can be hindered by inadequate stem cell number or poor engrafting efficiency. To overcome these deficits, we and others have previously reported the HSC-enhancing ability of a short-term exposure of prostaglandin E2 (PGE2); this strategy has now progressed to phase 1 clinical trials in double cord blood transplantation. To further analyze the short- and long-term effects of HSC exposure to PGE2, we followed the repopulation kinetics of PGE2-treated hematopoietic grafts through 5 serial transplantations and compared inherent long-term competitiveness in a HSC head-to-head secondary transplantation model. Treatment with PGE2 did not result in a long-term increase in HSC competitiveness, lineage bias, or enhanced proliferative potential, demonstrating that pulse exposure to PGE2 results in transient increases in HSC homing and engraftment potential

    Attitudes among young adults in Palestine about peers with substance use problems: Challenges and opportunities for community intervention design

    Get PDF
    Social reintegration is necessary to support people in recovery from addiction, but it is often difficult in Palestine due to stigma. Bin Hussein’s instrument for measuring receptivity to social reintegration in various contexts in Saudi Arabia was employed for comparison in the West Bank. Data were collected in 2013 at Al-Quds University at the Abu Dis campus. More than half of the respondents have moderate attitudes toward social reintegration of people in recovery. There were no significant relationships between perceptions about social reintegration and gender, age, year in college, area of academic focus, and form of residence. Implications are discussed.The author(s) received no financial support for the research, authorship, and/or publication of this article

    Mechanisms of Muscle Weakness Associated with Bone Metastases

    Get PDF
    Cancer-associated muscle dysfunction represents a deadly clinical problem, with ca. 80% mortality together with an increased toxicity from cancer treatment.. The normal bone remodeling might be disrupted by tumor cells that metastasize to bone in certain stages of cancer, which results in increased morbidity including muscle weakness. The reason for that muscle weakness might be attributed to the reduction on muscle mass or the reduction of muscle function. In fact, it has been demonstrated that in advanced cancers, it is probably caused by a combination of reductions, quantity and quality of muscle. This review focuses on the mechanisms that bone metastases promote skeletal muscle weakness

    Serum leptin and its relation to anthropometric measures of obesity in pre-diabetic Saudis

    Get PDF
    Background: Little information is available on leptin concentrations in individuals with IGT. This study aims to determine and correlate leptin levels to anthropometric measures of obesity in prediabetic, (IFG and IGT), type 2 diabetic and normoglycaemic Saudis. Methods: 308 adult Saudis (healthy controls n = 80; pre-diabetes n = 86; Type 2 diabetes n = 142) participated. Anthropometric parameters were measured and fasting blood samples taken. Serum insulin was analysed, using a solid phase enzyme amplified sensitivity immunoassay and also leptin concentrations, using radio-immunoassay. The remaining blood parameters were determined using standard laboratory procedures. Results: Leptin levels of diabetic and pre-diabetic men were higher than in normoglycaemic men (12.4 [3.2–72] vs 3.9 [0.8–20.0] ng/mL, (median [interquartile range], p = 0.0001). In females, leptin levels were significantly higher in pre-diabetic subjects (14.09 [2.8–44.4] ng/mL) than in normoglycaemic subjects (10.2 [0.25–34.8] ng/mL) (p = 0.046). After adjustment for BMI and gender, hip circumference was associated with log leptin (p = 0.006 with R2 = 0.086) among all subjects. Conclusion: Leptin is associated with measures of adiposity, hip circumference in particular, in the non-diabetic state among Saudi subjects. The higher leptin level among diabetics and pre-diabetics is not related to differences in anthropometric measures of obesity

    Improved autologous cortical bone harvest and viability with 2Flute otologic burs

    Get PDF
    Objectives To determine if 2Flute (Stryker Corporation, Kalamazoo, MI) otologic burs improve the size, cellular content, and bone healing of autologous cortical bone grafts harvested during canal wall reconstruction (CWR) tympanomastoidectomy with mastoid obliteration. Study Design Institutional review board-approved prospective cohort study. Methods Human autologous cortical bone chips were harvested using various burs (4 and 6 mm diameter; multiflute, and 2Flute [Stryker Corporation]) from patients undergoing CWR tympanomastoidectomy for the treatment of chronic otitis media with cholesteatoma. Bone chip size, cell counts, cellular gene expression, and new bone formation were quantified. Results Bone chips were significantly larger when harvested with 2Flute (Stryker Corporation) bur compared to multiflute burs at both 6 mm diameter (113 ± 14 μm2 vs. 66 ± 8 μm2; P < 0.05) and 4 mm diameter (70 ± 8 μm2 vs. 50 ± 3 μm2; P < 0.05). After 2 weeks in culture, cell numbers were significantly higher when harvested with 2Flute (Stryker Corporation) bur compared to multiflute burs at both 6 mm diameter (48.7 ± 3 vs. 31.8 ± 3 cells/μg bone; P < 0.05) and 4 mm diameter (27.6 ± 1.2 vs. 8.8 ± 1.2 cells/μg bone; P < 0.05). Bone-derived cells express osteoblast markers (alkaline phosphatase, osteocalcin). Cultured cells are able to form new bone in culture, and bone formation is facilitated by the presence of bone chips. Conclusion Use of 2Flute (Stryker Corporation) otologic burs for human autologous cortical bone harvest results in more viable bone fragments, with larger bone chips and more osteoblasts. Future studies are needed to determine if this leads to improved bone healing

    CXCR4 expression in the bone marrow microenvironment is required for hematopoietic stem and progenitor cell maintenance and early hematopoietic regeneration after myeloablation

    Get PDF
    The bone marrow (BM) microenvironment/niche plays a key role in regulating hematopoietic stem and progenitor cell (HSPC) activities; however, mechanisms regulating niche cell function are not well understood. In this study, we show that niche intrinsic expression of the CXCR4 chemokine receptor critically regulates HSPC maintenance during steady state, and promotes early hematopoietic regeneration after myeloablative irradiation. At steady state, chimeric mice with wild-type (WT) HSPC and marrow stroma that lack CXCR4 show decreased HSPC quiescence, and their repopulation capacity was markedly reduced. Mesenchymal stromal cells (MSC) were significantly reduced in the BM of CXCR4 deficient mice, which was accompanied by decreased levels of the HSPC supporting factors stromal cell-derived factor-1 (SDF-1) and stem cell factor (SCF). CXCR4 also plays a crucial role in survival and restoration of BM stromal cells after myeloablative irradiation, where the loss of BM stromal cells was more severe in CXCR4-deficient mice compared to WT mice. In addition, transplantation of WT donor HSPC into CXCR4-deficient recipient mice demonstrated reduced HSPC homing and early hematopoietic reconstitution. We found that CXCR4 signaling attenuates irradiation-induced BM stromal cell loss by upregulating the expression of the antiapoptotic protein Survivin via the PI3K pathway. Our study suggests that SDF-1-CXCR4 signaling in the stromal microenvironment cells plays a crucial role in maintenance of HSPCs during homeostasis, and promotes niche regeneration and early hematopoietic reconstitution after transplantation. Modulation of CXCR4 signaling in the HSPC microenvironment could be a means to enhance hematopoietic recovery after clinical hematopoietic cell transplantation

    Impact of tribo-morphological transformation of graphene on the viscosity of engine oils

    Get PDF
    One of the major factors that determines the choice of engine oil is its viscosity. This research investigates the impact of graphene on the viscosity of engine oil before and after IC engine operation. Morphological changes of the graphene flakes have been studied to understand its dependency on the rheological performance of engine oil. Graphene based nanolubricants were synthesized to meet API SN/CF 20W50 grade. Scanning electron microscopy graphs show that the graphene flakes undergo tribomorphological transformations to become tubes, helical coils and percolated structures. However, such changes do not significantly impact the viscosity of engine oil throughout its life-cycle
    corecore