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Objectives:  To determine if 2Flute otologic burs improve the size, cellular content and bone 

healing of autologous cortical bone grafts harvested during canal wall reconstruction 

tympanomastoidectomy with mastoid obliteration. 

Study Design:  IRB-approved prospective cohort study. 

Methods:  Human autologous cortical bone chips were harvested using various burs (4 and 6 

mm diameter; multiflute and 2Flute) from patients undergoing canal wall reconstruction 

tympanomastoidectomy for the treatment of chronic otitis media with cholesteatoma. Bone chip 

size, cell counts, cellular gene expression and new bone formation were quantified.  

Results:  Bone chips were significantly larger when harvested with 2Flute bur compared to 

multiflute burs at both 6mm diameter (113 ± 14 μm2 vs. 66 ± 8 μm2; P < 0.05) and 4mm diameter 

(70 ± 8 μm2 vs. 50 ± 3 μm2; P < 0.05). After 2 weeks in culture, cell numbers were significantly 

higher when harvested with 2Flute bur compared to multiflute burs at both 6 mm diameter (48.7 

± 3 vs. 31.8 ± 3 cells/μg bone; P < 0.05) and 4 mm diameter (27.6 ± 1.2 vs. 8.8 ± 1.2 cells/μg 

bone; P < 0.05). Bone derived cells express osteoblast markers (alkaline phosphatase, 

osteocalcin). Cultured cells are able to form new bone in culture and bone formation is facilitated 

by the presence of bone chips.  

Conclusions: Use of 2Flute otologic burs for human autologous cortical bone harvest results in 

more viable bone fragments with larger bone chips and more osteoblasts. Future studies are 

needed to determine if this leads to improved bone healing.  
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Introduction 

Canal wall reconstruction tympanomastoidectomy with mastoid obliteration (CWR) is 

used for the treatment of cholesteatoma in children and adults. The advantages of CWR include 

decreased recurrence of cholesteatoma compared to canal wall up (CWU) 

tympanomastoidectomy, increased intraoperative visualization of cholesteatoma similar to canal 

wall down (CWD) tympanomastoidectomy, while obviating the need for lifetime mastoid cavity 

cleanings or water activity restrictions1.  

The CWR procedure involves harvesting autologous bone pâté from the mastoid or 

occipital cortex, which is used to obliterate the mastoidectomy defect after the ear canal 

reconstruction2. To increase visualization during cholesteatoma removal, strategic cuts are made 

in the posterior ear canal allowing it to be removed. After cholesteatoma removal and 

tympanoplasty, the canal wall is replaced and the mastoid is obliterated with the autologous bone 

pâté. Obliteration of the mastoid physically supports the reconstructed posterior ear canal and 

reduces the nitrogen absorbing mucosa of the mastoid epithelium, which has been implicated in 

the development of cholesteatoma2. 

Early in the description of the CWR procedure, postoperative mastoid infection was as 

high as 14.3%2. Subsequently, autologous bone pâté was only harvested from the squamous 

portion of the temporal bone or the occipital bone without contamination with mastoid air cells 

and institution of aggressive postoperative antibiotic treatment led to a decrease in the infection 

rate to 4.5%2.   

To date, there is little known about the composition and viability of the bone pâté used to 

obliterate the mastoid during CWR. Autologous bone pâté is harvested with cutting burs and 

improving the viability of the bone pâté may also facilitate bone healing and reduce 
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postoperative infections. Here we investigated how otologic bur size and design impacts the 

viability of human cortical bone pâté.  
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Methods 

Our study was IRB-expedited through standard review (IRB Protocol #: 1502682884). Written 

consent was obtained for tissue analysis from all patients or their guardians. Our laboratory IBC 

protocol (IBC #: IN-675) was also approved. 

Harvesting Bone Pâté 

Bone pâté was harvested during CWR tympanomastoidectomy procedures from the 

squamous portion of the temporal bone or the occipital bones of both adults and children. 

Samples were collected using four otologic burs in a random order of sequence and were 

collected only at the start of a drilling procedure to ensure only cortical bone pâté would be 

collected. Drill burs were provided by Stryker Corporation (Kalamazoo, Michigan). The four 

different burs included the 6 mm 2Flute, 4 mm 2Flute, 6 mm multiflute, and 4 mm multiflute.  

Bone pâté was collected with a sterile tongue blade and placed directly into culture medium. 

Approximately 10 mg of bone pâté from each bur was placed in a unique 50 mL conical vial 

containing 30 mL of serum-free media (SFM) for transport to a cell culture lab and was plated or 

fixed within 12 hours after collection. The SFM consisted of Advanced DMEM/F12 with 100 

U/mL penicillin and 100 ug/mL streptomycin. 

Determination of Bone Fragment Size 

Bone pâté samples were fixed in 10% neutral-buffered formalin for 48 hours and embedded 

in OCT. 3.5-µm sections were cut and stained with hematoxylin and eosin (H&E) with orange G 

and phloxine. Sections were imaged to determine the bone fragment size distribution for each 

drill bur type. Samples were de-identified and assigned a random number to blind the imaging 

and imaging analysis process. All sections were viewed on a Leica DM LB compound 

microscope outfitted with a Q-Imaging Micropublisher Cooled CCD color digital camera. 
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Images were captured and analyzed using Bioquant software v. 15.1 (Bioquant Image Analysis 

Corp, Nashville , TN). The individual bone fragment surface area measurements were collected 

into a Prism 6 spreadsheet. Statistical analysis was done using GraphPad Prism program 

version6. Fragment surface area lengths of >35 μm2 were calculated as these represented the 

largest solitary fragments. A two-tailed Student’s t-test was used to determine the significance of 

the results. 

In vitro culture of bone pâté 

Bone pâté samples in SFM medium were placed in a cell culture hood where the SFM 

was vacuum aspirated.  25 mL of phosphate buffered saline (PBS) were added to each conical 

vial.  The samples were vortexed for 10 seconds after which the vials were kept still for 30 

seconds to allow for any undesired hematopoetic tissue to rise. The PBS was then vacuum 

aspirated.  This process was repeated twice until the bone samples appeared ivory white3.  All 

aspirations were performed with care to avoid accidental aspiration of bone pâté. 

Uncoated 60 mm cell culture dishes were plated with 5 mL of complete media, followed 

by ~10 mg of the bone pâté sample collected with a sterilized microspatula from the conical vial.  

The complete media consisted of Advanced DMEM/F12 with 10% fetal bovine serum, 2 mM 

GlutaMAX, 100 U/mL penicillin, and 100 ug/mL streptomycin. The bone pâté culture plates 

were kept in a 5% CO2, 37°C incubator for 3-4 weeks. The media was changed once a week 

during the first two weeks of culture and twice weekly thereafter. Within 4 weeks the culture 

specimens were analyzed to understand the cell types present. This analysis was conducted 

through staining, RT-PCR, and further culture on osteogenic media (PromoCell Mesenchymal 

Stem Cell Osteogenic Differentiation Medium, Catalog Number: C-28013). 

In-vitro Testing of Osteoblast Characteristics 
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After 14 days in culture, non-adherent bone pâté fragments were removed from the cell 

culture plates using a P1000 micropipette with a wide-mouthed tip to leave only adherent cells 

and adherent bone fragments. Twice, 5 mL of PBS were carefully added and aspirated via the 

wide-tipped micropipette to ensure the full removal of all unattached bone fragments.  5 mL of 

fresh complete media was restored to the plates.  

The osteogenic capacity of the sample was evaluated by replacing the complete media 

with osteogenic media when the cells reached confluency. After 3 weeks in osteogenic media 

with twice weekly media replacement the cultures were stained for alkaline phosphatase or with 

alizarin red to determine calcium/phosphate crystal formation.   

For alkaline phosphatase staining the cells were washed once with PBS then fixed with 2 

mL of neutral buffered formalin. After 60 seconds the formalin was aspirated and replaced with a 

washing buffer of 0.05% Tween in PBS. The washing buffer was aspirated and replaced with a 

BCIP/NBT (5-bromo-4-chloro-3-indolyl-phosphate/nitro blue tetrazolium) solution. This 

solution was incubated in the dark at room temperature for 10 minutes. The plate was washed 

once with washing buffer followed by PBS. The stain was immediately imaged4. 

For alizarin red staining the cells were fixed using 2 mL of 10% neutral buffered formalin 

per plate. The plates were then washed twice using 2 mL of PBS. Alizarin Red (4.1 pH) was 

added to each plate and kept on the plates for 45 minutes. The stained plates were then washed 

three times with 2 mL of ddH20 and immediately imaged4. 

Counting Cultured Viable Osteoblasts  

 After 3-4 weeks of culture, before significant logarithmic growth, the wet bone pâté from 

each plate was removed through multiple PBS washes and deposited in a pre-weighed container.   

The bone pâté cultured cells were then trypsinized and passed through a cell strainer to filter out 
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all bone fragments. These cell suspensions were manually counted using a hemocytometer. The 

pre-weighed container with discarded bone pâté was then vacuum aspirated, set aside, and dried 

overnight to obtain a dry bone mass that was used to normalize the cell count data.  A two-tailed 

Student’s t-test was used to determine the significance of the results. 
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RESULTS 

 The four burs used in this study vary by head diameter (6 mm vs. 4 mm) and with respect 

to the cutting design (Figure 1). The 2Flute burs have 2 cutting flutes while the multi-fluted burs 

have 8 flutes (Figure 1). In addition, the angulation of the flutes around the head of the bur is 

increased in the multi-fluted burs compared to the 2Flute burs (Figure 1). Finally, the 6 mm burs 

have a 50% larger diameter than the 4 mm burs.  

 Bone pâté was harvested from patients undergoing CWR using the 4 various burs. Bone 

pâté fragments varied in size based on bur size and bur shape. Representative images of bone 

pâté fragments are shown (Figure 2 A-D). The surface areas of individual bone pâté fragments 

from each bur were quantified. The 6 mm 2Flute bur generated the larger bone pâté fragments 

(Figure 2E).  Bone pâté fragments were significantly larger when harvested with 2Flute bur 

compared to multiflute burs at both 6 mm diameter (112,632 ± 14,216 μm2, n = 32 vs. 66,637 ± 

8,387 μm2, n = 16; mean ± SE; P < 0.05) and 4mm diameter (70,158 ± 8,131 μm2, n = 35 vs. 

50,060 ± 3,198 μm2, n = 21, mean ± SE; P < 0.05, Figure 2E). Interestingly, bone pâté fragments 

produced by the 4 mm 2Flute were not significantly different in size compared to the 6 mm 

multi-fluted bur despite having a bur diameter that is 50% smaller (Figure 2E).  This finding 

implicates that the bur shape (i.e. 2Flute) is integral in obtaining large bone pâté fragments.  

 Next we analyzed the ability of surviving cells to be cultured from the bone pâté under 

the 4 bur conditions using equal amounts of bone pâté (Figure 3 A-D). Bur size and shape 

appears to be correlated with the number of viable bone cells in an autograft. Generally, the 

adherent cells of the 6 mm 2 flute were more numerous and exhibited sheeting before the other 

burs. Representative images of each bur after three weeks of in-vitro culture can be seen in 

Figure 3 A-D. After 3 weeks in culture, cell counts were significantly higher when harvested 
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with 2Flute burs compared to multiflute burs at both 6 mm diameter (48.7 ± 3 vs. 31.8 ± 3 

cells/μg bone; P < 0.05) and 4 mm diameter (27.6 ± 1.2 vs. 8.8 ± 1.2 cells/μg bone; P < 0.05; 

Figure 3E). The number of cultured cells was not significantly different between the 4 mm 

2Flute bur and the 6 mm multiflute bur, despite the bur being 50% smaller in diameter (Figure 

3E). 

 Next, we analyzed the cells for molecular markers of bone derived cells. Alkaline 

phosphatase, an enzyme highly expressed in osteoblasts, was observed in most of the cells 

(Figure 4 A-B). This demonstrates that human autograft bone pâté fragments harbor surviving 

osteoblasts. Cells derived from all four bur conditions exhibited similar expression of alkaline 

phosphatase.   

 We next determined if these cultured cells possessed the ability to generate osteoid or 

new bone in culture. Bone pâté-derived cells were cultured in an osteogenic media in the 

presence of bone pâté fragments. At day 31, it appears that the cell density is higher around the 

bone pâté fragments (Figure 4C, d31). This cellular density expands peripherally around the 

bone fragment at d45 (Figure 4D, d45). Alizarin Red is a stain used to detect new osteoid or 

bone formation. We observed new osteoid deposits throughout the plate, but most intensely 

around each bone pâté fragments (Figure 5E, d46) suggesting that bone formation or cell 

proliferation is accelerated in the presence of bone pâté fragment. In addition, bone pâté-derived 

cells cultured in the absence of bone pâté fragments also exhibited Alizarin Red osteoid (data not 

shown).  

Finally, we analyzed the gene expression of the bone pâté-derived cells in culture. 

Alkaline Phosphatase, Collagen 1a, Osteonectin, and Osteocalcin were all expressed in the 
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cultured cell (Figure 5).  These markers are all highly expressed in osteoblasts with osteocalcin 

being exclusively expressed by osteoblasts.    

Human autologous bone harvested with the 6 mm 2Flute bur is observed on postoperative 

imaging of the mastoid after a primary canal wall reconstruction tympanomastoidectomy with 

mastoid obliteration procedure (Figure 6).   
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DISCUSSION 

 Bone pâté autografts produced from cortical bone with 2Flute otologic burs contain larger 

bone fragments than multiflute otologic burs. The 2Flute-harvested bone pâté fragments are not 

only larger but contain more surviving osteoblasts, which facilitate new bone formation. This 

suggests that bone derived from 2Flute otologic burs is more viable for replacement into the 

mastoid during CWR than multiflute otologic burs. This improvement in bioactivity has 

implications for improved bone healing in addition to potentially decreasing the rates of 

absorption and infection. 

 Autografts are often the material of choice when performing cranial reconstruction. In 

cranioplasty procedures bone autografts are less likely to be infected or resorbed when compared 

to calcium phosphate bone cement and demineralized bone matrix5. Particulate bone pâté 

autografts are a further refinement reported to reduce osseous defects from 24 percent to 9 

percent when compared to split calvarial autografts in cranioplasty6. Osteocytes are able to 

remain viable after drilling and may participate in bone reconstruction after autograft placement.  

Furthermore, the increased surface area to volume ratio of particulate autografts improves 

diffusion of nutrients and growth factors to accelerate integration of the autograft7. 

While the smaller particulate autograft is an improvement over the whole bone autograft, 

our study suggests increasingly small particulate bone fragments have more limited viability. 

The 2Flute burs produced larger bone fragments than the multiflute burs. This is likely due to the 

increased clearance between the 2Flute bur’s cutting lips. These relatively large fragments 

improved the viability of osteocytes as demonstrated by normalized in-vitro cell counts. Fresh 

autografts have a lower rate of infection and better preservation of desired anatomy than grafts 

with fewer viable cells such as frozen or pre-harvested grafts5. The bone harvest was made 
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carefully to ensure the bone pâté was composed of only cortical bone as cancellous bone is more 

cellular and could skew the results of the cell counts.   

The initial phase of bone healing is characterized by neovascularization with increased 

osteoclast activity and resorption.  However, within days osteogenesis will also begin.  During 

the osteogenic period particulate autografts participate in both internal mineralization and 

creeping mineralization by surrounding bone at the edges of the graft8. We observed that 

particulate bone pâté autografts produce viable cells that may participate in osteogenesis. Our 

cultured bone pâté cells demonstrate characteristics of osteoblasts including alkaline phosphatase 

activity, the ability to form osteoid matrix, and osteoblast RNA expression especially when 

induced by mineralization media. These capacities may be induced by in vivo growth factors 

during post-surgical bone healing. 

Our study’s findings are limited by the use of an in-vitro model. In-vitro human 

osteoblast culture is a powerful, well-studied method with more flexibility than an animal model. 

Although bone pâté cultures can be stimulated to generate new bone with osteogenic media, 

autograft osteocytes and osteoblasts may behave differently in vivo. Further study of bone pâté 

autografts in an animal temporal bone model could further elucidate their post-operative 

behavior. Also, we did not perform a randomized trial of CWR using various burs to determine 

bone healing and infections rates. 

  



Cortical Bone Viability 

 14 

CONCLUSION 

Innovations in surgical drill bur manufacture have expanded the skull base surgeon’s tool 

kit. In this study we have found that the 2Flute otologic drill bur produces more viable bone 

fragments.  Future studies are need to determine if this leads to improved bone healing. This 

improvement could be useful in autologous bone graft procedures such as canal wall 

reconstruction2, cranioplasty4-6,9, and occipitocervical fusion10,11 among others.  
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FIGURE LEGENDS 

Figure 1. Visual representation of burs tested (mm = millimeters) 

Figure 2.  (A-D) Representative histologic sections of bone pâté fragments produced by each bur  

(E) Bone pâté fragment surface area distribution for each bur. (mm = millimeters, * = P < 0.05,  

NS = non-significant) 

Figure 3.  (A-D) Representative images of adherent cells after 2 weeks of culture after 

harvesting with various burs. (B) Cell counts of adherent cells at 2 weeks in culture of bone pâté 

fragments obtained with various burs. (mm = millimeters, μg = micrograms, * = P < 0.05, NS = 

non-significant) 

Figure 4.  (A, B) Alkaline Phosphatase staining of cultured cells from 6 mm and 4 mm 2Flute 

burs. (C, C’, D, D’) In-vitro culture bone cell growth from day 31 to day 45 in culture (Arrows). 

(E, E’) Alizarin red positive osteoid at 46 days in culture. Inset (dashed box) = 40x 

magnification.  d = day 

Figure 5.  RT-PCR analysis of osteoblast related genes from adherent cells from bone pâté 

fragments after 38 days of culture (bp = base pairs of DNA). L27 is a control gene. 

Figure6.  Representative sagittal CT image of a patient who has undergone CWR with mastoid 

obliteration with bone pâté harvested with 6 mm 2Flute bur. Posterior ear canal cuts (arrows) and 

bone pâté (*) are noted.   
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