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Prostaglandin E2 enhances long-term repopulation but does not
permanently alter inherent stem cell competitiveness
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Key Points

• 16-16 dimethyl-PGE2

treatment enhances long-term
HSC repopulation without
lineage bias or transformation.

• Treatment of HSC with 16-16
dimethyl-PGE2 does not alter
long-term competitiveness.

Hematopoietic stem cell (HSC) transplantation is a lifesaving therapy for malignant and

nonmalignant hematologic diseases and metabolic disorders. Although successful, hema-

topoietic transplantation can be hindered by inadequate stem cell number or poor

engrafting efficiency. To overcome these deficits, we and others have previously re-

ported the HSC-enhancing ability of a short-term exposure of prostaglandin E2 (PGE2);

this strategy has now progressed to phase 1 clinical trials in double cord blood trans-

plantation. To further analyze the short- and long-term effects of HSC exposure to PGE2,

we followed the repopulation kinetics of PGE2-treated hematopoietic grafts through 5

serial transplantations and compared inherent long-termcompetitiveness in aHSChead-

to-head secondary transplantation model. Treatment with PGE2 did not result in a long-

term increase in HSC competitiveness, lineage bias, or enhanced proliferative potential, demonstrating that pulse exposure to PGE2

results in transient increases in HSC homing and engraftment potential. (Blood. 2013;122(17):2997-3000)

Introduction

Since the mid-1970s, a hematopoietic regulatory role for prosta-
glandin E2 (PGE2) has been described, demonstrating both inhib-
itory and stimulatory effects dependent on the cell type studied and
exposure kinetics (reviewed elsewhere).1-4 Using a zebrafish embryo
chemical screen, a long-acting agonist of PGE2, 16-16 dimethyl-
PGE2 (dmPGE2), was shown to increase hematopoiesis, whereas
inhibitors of PGE2 biosynthesis decreased hematopoiesis.5 Using
short-term ex vivo pulse exposure of bone marrow cells, similar to
exposure strategies previously reported,6,7 North and colleagues
elegantly demonstrated that murine bone marrow transplantation
was enhanced by dmPGE2.

5We later demonstrated that this enhanced
hematopoietic stem cell (HSC) engraftment resulted from an increase
inCXCR4 on hematopoietic stem and progenitor cells and enhanced
homing to the marrow; it also increased expression of Survivin,
with reduced HSC apoptosis and increased HSC division.8 In
addition, we showed that enhanced HSC engraftment was maintained
in secondary transplantation.8 Enhanced HSC production and long-
term repopulation by PGE2 was also shown to be mediated through
enhanced Wnt/b-catenin signaling.9

Based on these preclinical findings, a phase 1 clinical trial eval-
uating safety and efficacy of ex vivo dmPGE2 pulse treatment of
umbilical cord blood cells was initiated, the results of which are
published in this edition of Blood.10 One prime question raised by
treatment of HSCs with dmPGE2, however, is whether its effects
on HSCs are short lived or whether treatment alters long-term
potential. Here, we report on extended analysis of dmPGE2-treated

hematopoietic grafts, following multilineage repopulation of hemato-
poiesis through 5 serial transplantations and comparison of the
engraftment potential of vehicle- and dmPGE2-treated HSCs on
a cell-to-cell basis. We demonstrate that dmPGE2 treatment does not
alter long-term HSC competitiveness, lineage bias, or proliferative
potential.

Methods

Mice

C57Bl/6 (CD45.2) mice were purchased from Jackson Laboratories (Bar
Harbor, ME). B6.SJL-PtrcAPep3B/BoyJ (BOYJ) (CD45.1) and C57Bl/6 3
BOYJ F1-hybrid mice (CD45.1/CD45.2) were bred in-house. All mice in
transplant studies received doxycycline feed for 30 days posttransplant.
The Animal Care and Use Committee of the Indiana University School of
Medicine approved all protocols.

Competitive transplantation

Competitive transplantation was performed as previously described,8 and the
primary and secondary transplant data are reflective of these previously
published results. For serial transplants, 2 3 106 whole bone marrow
(WBM) cells from previously transplanted CD45.1/CD45.2 F1-hybrid
mice were injected into lethally irradiated CD45.1/CD45.2 F1-hybrid mice in
noncompetitive fashion. Secondary, tertiary, quaternary, and quinary transplants
were performed in a similar manner, with the tertiary transplant performed
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24 weeks after the secondary transplant, and the quaternary and quinary
transplants performed 12 weeks after the prior transplant. Chimerism and
multilineage flow analysis was performed as previously described and
representative flow plots of multilineage gating were shown.8

Long-term competitiveness assay

WBM cells from CD45.1 and CD45.2 donors were isolated and treated with
vehicle or dmPGE2 for 2 hours on ice. One cohort of lethally irradiated
F1-hybrid CD45.1/CD45.2 mice were transplanted with 53 105 vehicle-treated
CD45.1 cells and 5 3 105 dmPGE2-treated CD45.2 cells. A separate cohort
of irradiated F1-hybrid CD45.1/CD45.2 mice were transplanted in a similar
fashion with strain and treatment groups reversed. After 12 weeks, peripheral
blood chimerism was evaluated and bone marrow was acquired and stained
for CD45.1/CD45.2 and SLAM SKL (lineage negative, c-kit1, Sca-11,
CD1501, CD482) markers. CD45.11 and CD45.21 SLAM SKL cells were
individually isolated by fluorescence-activated cell sorting, and a second group
of irradiated F1-hybrid CD45.1/CD45.2 mice were transplanted with 2.53 102

CD45.11 SLAM SKL cells, 2.5 3 102 CD45.21 SLAM SKL cells, and
2.0 3 105 CD45.1/CD45.2 F1-hybrid WBM cells as competitors. Con-
tribution to chimerism of CD45.1 and CD45.2 SLAM SKL cells was
evaluated 12 weeks later.

Results and discussion

In a previous report, we used a competitive head-to-head transplant
model that permitted comparison of engraftment and competitive-
ness of vehicle- and dmPGE2-treated HSCs within the same animal.8

In the prior report, we validated enhanced engraftment after dmPGE2
treatment and showed that this enhancement persisted through sec-
ondary transplantation without additional treatment of cells before
retransplant (Figure 1A).8 We continued serial transplantations at
12-week intervals,monitoring chimerism andmultilineage reconstitution

Figure 1. dmPGE2 pulsed grafts maintain repopu-

lating ability through serial transplantations. (A)

Increased chimerism of dmPGE2-treated cells vs vehicle

is shown for primary transplant at 20 weeks (time of

secondary transplant) and in a subcohort at 32 weeks

(time of 12-week analysis of secondary transplant); for

secondary transplant at 12 weeks and 24 weeks; and

for tertiary, quaternary, and quinary at 12 weeks. Data

for 20-week primary transplant were from 2 pooled

experiments, n 5 5 mice per group, per experiment,

each assayed individually. Data for secondary, tertiary,

quaternary, and quinary transplantswere fromn55mice

per group, each assayed individually. Data are expressed

as mean 6 SEM; *P , .05. (B) Relative contribution to

lineages of myeloid and B- and T-lymphoid. Multilineage

analysis for primary transplant (32 weeks) and at

12 weeks posttransplant in serially transplanted

secondary, tertiary, and quaternary mice. n 5 5-10

mice per group, each assayed individually. (C) Rep-

resentative Wright’s Giemsa-stained cytospins from

normal bone marrow, marrow from secondary bone

marrow transplant 12 weeks after transplantation, and

marrow from quinary transplanted mice 12 weeks

after transplantation. Cytospins were photographed

at3200 (320 objective) with a Leica DM2500 Micro-

scope outfitted with Q-Imaging micropublisher camera

(W.Nushbaum Inc.,McHenry, IL). Bonemarrowcytospins

show normal cellularity. Both myeloid and precursors are

present and show normal maturation as well as mega-

karyocytes. There was no evidence of myeloid hyperpla-

sia, no noticeable increase inmyeloid or erythroid blasts,

and no obvious increase in immature granulocytic, mono-

cytic cells, or evidence of lymphoblastic transformation.
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through 5 serial transplantations. Grafts previously treated with
dmPGE2 maintained higher levels of chimerism through quaternary
serial transplantation, with HSC exhaustion occurring by the quinary
transplant, which is consistent with normal HSC exhaustion in a sim-
ilar experimental model.11 Bone marrow grafts from vehicle or
dmPGE2 treatment groups contributed to full multilineage re-
constitution throughout the first 4 serial transplantations (Figure 1B).
Although it was commonly assumed that a single HSC compartment
gives rise to all hematopoietic lineages equivalently, transplant studies
have demonstrated the presence of HSCs biased toward lymphoid
or myeloid differentiation.12-14 In secondary transplants, we observed
a myeloid bias in mice transplanted with dmPGE2-treated HSCs,
suggesting a possible selective effect on myeloid-biased HSCs.
However, a consistent lineage bias was not observed in subsequent
serial transplants (Figure 1B).

PGE2 signaling is a known mediator of cancer15,16 and intersects
with multiple signaling pathways downstream of 4 G protein–coupled
receptors. Wnt/b-catenin signaling was recently shown to be required
for the development of leukemia stem cells in acute myelogenous
leukemia17; this pathway lies downstream of PGE2 receptors.
Throughout the quinary transplants, peripheral blood white blood
cell differential counts remained within normal range in all mice at
the 12-week time points. Moreover, histological observation indi-
cated that there was no obvious alteration in the bonemarrow cellular
composition between quinary transplanted mice that had received
grafts originally treated with dmPGE2 before primary transplant vs

bone marrow from control-graft transplanted mice (Figure 1C).
These results suggest that dmPGE2 pulse treatment does not lead
to a preleukemic or myeloproliferative state.

Increased hematopoietic output by dmPGE2-treated grafts through
serial transplants could simply be the result of higher numbers of
HSCs homed and engrafted in the primary graft, proportionally
occupying available niche space and self-renewing. Alternatively,
enhanced hematopoietic output could result from epigenetic
changes in HSC elicited by dmPGE2 treatment,

18,19 leading to long-
term enhanced competitiveness, preferential dmPGE2 stimulation of
a subset of HSCs with enhanced inherent competitiveness,20 or an
unknown mechanism eliciting long-term competitive advantage. We
reasoned that if serial transplant results are simply due to an increase
in homed and engrafted HSCs in the primary graft, then “equalizing”
the HSC content from dmPGE2- and vehicle-treated grafts in a
subsequent secondary transplant should result in equal repopula-
tion. To test this hypothesis, dmPGE2- and vehicle-treated congenic
bone marrow cells were transplanted head to head into lethally
irradiated F1-hybrid mice, and chimerism was evaluated 12 weeks
later (Figure 2A). As seen in earlier transplants, dmPGE2 treatment
resulted in significantly increased chimerism (Figure 2B, left). Bone
marrow from these primary recipient mice was subsequently har-
vested and fluorescence-activated cell sorted for congenic SLAM
SKL cells. SLAMSKL cells derived from previously treated dmPGE2
grafts were 2.1-fold more abundant than those from vehicle-treated
grafts (0.0295% SLAM SKL cells in total marrow vs 0.0138%). We

Figure 2. dmPGE2 pulsed HSCs do not have an

inherent competitive advantage in secondary trans-

plants. (A) Schematic representation of experimental

design. WBM from CD45.1 mice and CD45.2 mice was

treated with both vehicle and dmPGE2 and then trans-

planted head to head into lethally irradiated (1100 cGy,

split dose) CD45.1/CD45.2 hybrid mice as shown

(2.53 105 cells per group). Chimerism was analyzed

at 12 weeks, and bone marrow from recipients was

collected and stained with fluorescent antibodies for

phenotypic markers, and cells were sorted for SLAM

SKL. SLAM SKL cells were transplanted head to

head into a second cohort of lethally irradiated CD45.1/

CD45.2 mice along with 2.0 3 105 WBM CD45.1/CD45.2

competitors, and chimerism analyzed 12 weeks later. (B)

Chimerism in peripheral blood is shown for 12 weeks after

the primary transplant and 12 weeks after the secondary

transplant (mean6 SEM). n 5 10 mice per group (total of

20mice for primary and 20mice for secondary); *P, .001.
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subsequently transplanted equal numbers of the sorted congenic SLAM
SKL cells head to head into secondary recipients along with
radioprotecting F1-hybrid bone marrow competitors without addi-
tional treatment. Equalizing the HSC content in secondary grafts
resulted in no differential increase in repopulating ability of previ-
ously dmPGE2-treated HSCs (Figure 2B, right). This result suggests
that the enhanced engraftment of dmPGE2-treated HSCs in primary
and subsequently serially transplanted recipients is a function of
increased numbers of homed HSCs and their subsequent survival/
self-renewal, resulting in a transient increase in competitiveness,
rather than a long-term increase in inherent HSC competitiveness.
Thus, short-term treatment of hematopoietic grafts before transplant is
a strategy to enhance HSC engraftment without concern for long-term
alteration of normal HSC function.
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