38 research outputs found

    Studies of structural, magnetic and dielectric properties of X-type Barium Zinc hexaferrite Ba2Zn2Fe28O46 powder prepared by combustion treatment method using ginger root extract as a green reducing agent

    Get PDF
    Various quantities of ginger (Zingiber officinale) root extract were used to prepare X-type Barium–Zinc hexaferrite with the chemical composition Ba2Zn2Fe28O46. The powders were prepared using a combustion treatment method, being pre-heated at 550 °C for 4 h with the ginger as a fuel, followed by final heating to 900 °C for 5 h and natural cooling to room temperature to obtain Ba2Zn2Fe28O46 hexagonal ferrite powder. The phase composition of heated powder samples was investigated by X-ray diffraction (XRD), indicating the formation of a mixture of X-type and hematite (α-Fe2O3). Up to 82.6%, X-ferrite was formed at 900 °C with 52.5 g of ginger root extract. Dielectric analysis of the prepared samples shows the frequency-dependent phenomena. All samples were hard magnets, with coercivity values (HC) between 262.2 and 318.3 kA m−1, and squareness ratios > 0.5. The sample prepared with 52.5 g ginger root extract possesses the highest value of saturation magnetisation (MS = 33.87 Am2 kg−1) in comparison with the other prepared samples. Therefore, ginger was shown to be a useful natural plant extract as a reducing fuel for the low-temperature synthesis of X-ferrites. The sample prepared with 35 g ginger root extract shows a broad loss tangent resonance peak between 10 kHz and 100 kHz, while other samples show loss tangent resonance peaks between 300 kHz and 2 MHz frequency range.publishe

    Microstructural and Mössbauer properties of low temperature synthesized Ni-Cd-Al ferrite nanoparticles

    Get PDF
    We report the influence of Al3+ doping on the microstructural and Mössbauer properties of ferrite nanoparticles of basic composition Ni0.2Cd0.3Fe2.5 - xAlxO4 (0.0 ≤ x ≤ 0.5) prepared through simple sol-gel method. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray, transmission electron microscopy (TEM), Fourier transformation infrared (FTIR), and Mössbauer spectroscopy techniques were used to investigate the structural, chemical, and Mössbauer properties of the grown nanoparticles. XRD results confirm that all the samples are single-phase cubic spinel in structure excluding the presence of any secondary phase corresponding to any structure. SEM micrographs show the synthesized nanoparticles are agglomerated but spherical in shape. The average crystallite size of the grown nanoparticles was calculated through Scherrer formula and confirmed by TEM and was found between 2 and 8 nm (± 1). FTIR results show the presence of two vibrational bands corresponding to tetrahedral and octahedral sites. Mössbauer spectroscopy shows that all the samples exhibit superparamagnetism, and the quadrupole interaction increases with the substitution of Al3+ ions

    Recent Advances in Flexible Sensors and Their Applications

    No full text
    Flexible sensors are low cost, wearable, and lightweight, as well as having a simple structure as per the requirements of engineering applications. Furthermore, for many potential applications, such as human health monitoring, robotics, wearable electronics, and artificial intelligence, flexible sensors require high sensitivity and stretchability. Herein, this paper systematically summarizes the latest progress in the development of flexible sensors. The review briefly presents the state of the art in flexible sensors, including the materials involved, sensing mechanisms, manufacturing methods, and the latest development of flexible sensors in health monitoring and soft robotic applications. Moreover, this paper provides perspectives on the challenges in this field and the prospect of flexible sensors

    Dielectric and impedance study of polycrystalline Li0.35-0.5XCd0.3NiXFe2.35-0.5XO4 ferrites synthesized via a citrate-gel auto combustion method

    No full text
    Polycrystalline ferrites having general formula Li0.35-0.5XCd0.3NiXFe2.35-0.5XO4 (0.00 <= X <= 0.08) were prepared using citrate-gel auto combustion method. Doping of Ni2+ ions in Li0.35Cd0.3Fe2.35O4 ferrite has resulted in grain growth inhibition. This has been attributed to the precipitation of Ni2+ ions in the grain boundary region during sintering process. The dielectric permittivity (epsilon'), ac conductivity (sigma(ac)) and dielectric loss tangent (tan delta) has been measured at different temperatures in the frequency domain of 100 Hz to 5 MHz. The behaviour of tan delta has been observed to show a relaxation phenomenon at relatively higher temperatures. The value of tan delta was also found to increase with temperature, which is an expected behaviour. For composition with X = 0.02, the value of dielectric permittivity was observed to increase. This is a very important feature for power applications of ferrites. Correlated barrier hopping conduction mechanism has been observed in all the samples. For sample with X = 0.00, the small polaron hopping conduction mechanism was observed first, followed by the correlated barrier hopping mechanism. The values of activation energies (E-a) for conduction process, determined from Arrhenius plots have been discussed as a function of Ni content. Nyquist plots have been utilized to delineate the contribution of the resistances of grain and grain boundary with temperature and composition

    Structure, morphology, dielectric study of Ba-doped SrTiO3 by sol-gel method for optical applications

    No full text
    The goal of this study is to fabricate barium-doped strontium titanate nanomaterial utilizing the sol–gel technique and a range of barium nitrate concentrations. Electrical Structural properties, CV, FTIR, and SEM of all samples had been studied. The X-ray diffraction (XRD) results of the samples showed the cubic structure of strontium titanate. The Cyclic Voltammetry (CV) is performed on all the samples in light and dark conditions, the results showed enhanced current in the CV graph with the increase of Barium concentration from 5, 10, 15, and 20%. The increase in absorption characteristics were also observed when the doping of Ba increased. The bandgap was measured through resistivity and a decrease in bandgap was noted. Pure SrTiO3 morphology showed an oval/spherical crystalline phase when the dopant concentration was increased to 20%, the results show an asymmetrical shape. Keithley's source meter was used to measure all samples' dielectric characterization, which included the dielectric constant, dielectric loss, electrical susceptibility, and conductivity. The results revealed a decline in the dielectric characteristics. It was also observed that when the doping concentrations increase, the dependency of the samples on frequency as well as on temperature also increases

    Acacia hydaspica R. Parker prevents doxorubicin-induced cardiac injury by attenuation of oxidative stress and structural Cardiomyocyte alterations in rats

    No full text
    Abstract Background The use of doxorubicin (DOX) an anthracycline antineoplastic agent is withdrawn due to its cardio-toxic side effects. Oxidative stress has been recognized as the primary cause of DOX induced cardiotoxicity. We have investigated whether polyphenol rich ethyl acetate extract of Acacia hydaspica (AHE) can attenuate doxorubicin-induced cardiotoxicity via inhibition of oxidative stress. Methods AHE was administered orally to rats once daily for 6 weeks at doses of 200 and 400 mg/kg b.w. DOX (3 mg/kg b.w. i.p., single dose/week) was administered for 6 weeks (chronic model). The parameters studied to evaluate cardioprotective potential were the serum cardiac function biomarkers (CK, CKMB, AST and LDH), hematological parameters, cardiac tissue antioxidant enzymatic status and oxidative stress markers, and histopathological analysis to validate biochemical findings. Results Chronic 6 week treatment of DOX significantly deteriorated cardiac function biomarkers and decreased the activities of antioxidant enzymes, whereas significant increase in oxidative stress biomarkers was noticed in comparison to control group. AHE dose dependently protected DOX-induced leakage of cardiac enzymes in serum and ameliorated DOX-induced oxidative stress; as evidenced by decreasing lipid peroxidation, H2O2 and NO content with increase in phase I and phase II antioxidant enzymes. Doxorubicin treatment produced severe morphological lesions, leucopenia, decrease in red blood cell counts and hemoglobin concentrations. AHE co-treatment protected the heart and blood elements from the toxic effects of doxorubicin as indicated by the recovery of hematological parameters to normal values and prevention of myocardial injuries in a dose dependent way. The protective potency of AHE (400 mg/kg b.w) was equivalent to silymarin. Conclusion Results revealed that AHE showed protective effects against DOX induce cardiotoxicity. The protective effect might attribute to its polyphenolic constituents and antioxidant properties. AHE might be helpful in combination therapies as safer and efficient

    Behavior-based swarm model using fuzzy controller for route planning and E-waste collection

    No full text
    Nowadays, because of the increase in consumption of electronic equipment and its resource utilization, household e-waste has been generated gradually. The increase in e-waste generation brought environmental burdens as well as a health risk in several nations. The disposal of e-waste in landfills is not recommended due to some poisonous and contaminated chemicals. The improper collection of e-waste leads to a negative impact on human health and also causes air pollution, as well as the long-term effects on the environment. To address such issues, the behavior-based swarm model using a fuzzy controller (BSFC) is proposed for efficient e-waste collection. The proposed algorithm is employed to solve the problem based on routing associated with the time window for the heterogeneous fleet of the e-waste collection vehicle. The approach is provided for the online system that enables the people to request for the collection of e-waste components and also to solve the vehicle’s routing problem. The optimization result demonstrates the decrease in the collection cost and also the on-time e-waste collection from the household. The method comprises the implementation of e-waste collection requests in China and India for several urban arrangements of buildings and streets. The proposed approach fetches considerable enhancement in vehicle routing plans for the e-waste collection, counting the positive social impacts for the waste collection, particularly in urban regions

    Interdependence between electrical and magnetic properties of polycrystalline cobalt-substituted tungsten bronze multiferroic ceramics

    No full text
    Polycrystalline cobalt-substituted tungsten bronze ferroelectric ceramics with chemical composition Ba5CaTi2−xCoXNb8O30 (x=0.00, 0.02, 0.04 and 0.08) were synthesized by solid state reaction technique. X-ray diffraction (XRD) technique was used to confirm the phase formation and it revealed the formation of single phase tetragonal structure with space group P4bm. The surface morphology of the samples was studied by using the scanning electron microscopy (SEM) technique. The dielectric properties such as dielectric constant and dielectric loss have been investigated as a function of temperature and frequency. The P–E and M–H studies confirmed the coexistent of ferroelectricity and magnetism at room temperature. The P–E loop study indicated an increase in the coercive field while the M–H study depicted a decrease in the magnetization with the incorporation of cobalt ions
    corecore