3,688 research outputs found
Entropy, Dynamics and Instantaneous Normal Modes in a Random Energy Model
It is shown that the fraction f of imaginary frequency instantaneous normal
modes (INM) may be defined and calculated in a random energy model(REM) of
liquids. The configurational entropy S and the averaged hopping rate among the
states R are also obtained and related to f, with the results R~f and
S=a+b*ln(f). The proportionality between R and f is the basis of existing INM
theories of diffusion, so the REM further confirms their validity. A link to S
opens new avenues for introducing INM into dynamical theories. Liquid 'states'
are usually defined by assigning a configuration to the minimum to which it
will drain, but the REM naturally treats saddle-barriers on the same footing as
minima, which may be a better mapping of the continuum of configurations to
discrete states. Requirements of a detailed REM description of liquids are
discussed
Potential energy landscape-based extended van der Waals equation
The inherent structures ({\it IS}) are the local minima of the potential
energy surface or landscape, , of an {\it N} atom system.
Stillinger has given an exact {\it IS} formulation of thermodynamics. Here the
implications for the equation of state are investigated. It is shown that the
van der Waals ({\it vdW}) equation, with density-dependent and
coefficients, holds on the high-temperature plateau of the averaged {\it IS}
energy. However, an additional ``landscape'' contribution to the pressure is
found at lower . The resulting extended {\it vdW} equation, unlike the
original, is capable of yielding a water-like density anomaly, flat isotherms
in the coexistence region {\it vs} {\it vdW} loops, and several other desirable
features. The plateau energy, the width of the distribution of {\it IS}, and
the ``top of the landscape'' temperature are simulated over a broad reduced
density range, , in the Lennard-Jones fluid. Fits to the
data yield an explicit equation of state, which is argued to be useful at high
density; it nevertheless reproduces the known values of and at the
critical point
Challenges in imaging and predictive modeling of rhizosphere processes
Background Plant-soil interaction is central to human food production and ecosystem function. Thus, it is essential to not only understand, but also to develop predictive mathematical models which can be used to assess how climate and soil management practices will affect these interactions. Scope In this paper we review the current developments in structural and chemical imaging of rhizosphere processes within the context of multiscale mathematical image based modeling. We outline areas that need more research and areas which would benefit from more detailed understanding. Conclusions We conclude that the combination of structural and chemical imaging with modeling is an incredibly powerful tool which is fundamental for understanding how plant roots interact with soil. We emphasize the need for more researchers to be attracted to this area that is so fertile for future discoveries. Finally, model building must go hand in hand with experiments. In particular, there is a real need to integrate rhizosphere structural and chemical imaging with modeling for better understanding of the rhizosphere processes leading to models which explicitly account for pore scale processes
The Potential Energy Landscape and Mechanisms of Diffusion in Liquids
The mechanism of diffusion in supercooled liquids is investigated from the
potential energy landscape point of view, with emphasis on the crossover from
high- to low-T dynamics. Molecular dynamics simulations with a time dependent
mapping to the associated local mininum or inherent structure (IS) are
performed on unit-density Lennard-Jones (LJ). New dynamical quantities
introduced include r2_{is}(t), the mean-square displacement (MSD) within a
basin of attraction of an IS, R2(t), the MSD of the IS itself, and g_{loc}(t)
the mean waiting time in a cooperative region. At intermediate T, r2_{is}(t)
posesses an interval of linear t-dependence allowing calculation of an
intrabasin diffusion constant D_{is}. Near T_{c} diffusion is intrabasin
dominated with D = D_{is}. Below T_{c} the local waiting time tau_{loc} exceeds
the time, tau_{pl}, needed for the system to explore the basin, indicating the
action of barriers. The distinction between motion among the IS below T_{c} and
saddle, or border dynamics above T_{c} is discussed.Comment: submitted to pr
Instantaneous Normal Mode analysis of liquid HF
We present an Instantaneous Normal Modes analysis of liquid HF aimed to
clarify the origin of peculiar dynamical properties which are supposed to stem
from the arrangement of molecules in linear hydrogen-bonded network. The
present study shows that this approach is an unique tool for the understanding
of the spectral features revealed in the analysis of both single molecule and
collective quantities. For the system under investigation we demonstrate the
relevance of hydrogen-bonding ``stretching'' and fast librational motion in the
interpretation of these features.Comment: REVTeX, 7 pages, 5 eps figures included. Minor changes in the text
and in a figure. Accepted for publication in Phys. Rev. Let
Configurational entropy of hard spheres
We numerically calculate the configurational entropy S_conf of a binary
mixture of hard spheres, by using a perturbed Hamiltonian method trapping the
system inside a given state, which requires less assumptions than the previous
methods [R.J. Speedy, Mol. Phys. 95, 169 (1998)]. We find that S_conf is a
decreasing function of packing fraction f and extrapolates to zero at the
Kauzmann packing fraction f_K = 0.62, suggesting the possibility of an ideal
glass-transition for hard spheres system. Finally, the Adam-Gibbs relation is
found to hold.Comment: 10 pages, 6 figure
Noise reduction in a Mach 5 wind tunnel with a rectangular rod-wall sound shield
A rod wall sound shield was tested over a range of Reynolds numbers of 0.5 x 10 to the 7th power to 8.0 x 10 to the 7th power per meter. The model consisted of a rectangular array of longitudinal rods with boundary-layer suction through gaps between the rods. Suitable measurement techniques were used to determine properties of the flow and acoustic disturbance in the shield and transition in the rod boundary layers. Measurements indicated that for a Reynolds number of 1.5 x 10 to the 9th power the noise in the shielded region was significantly reduced, but only when the flow is mostly laminar on the rods. Actual nozzle input noise measured on the nozzle centerline before reflection at the shield walls was attenuated only slightly even when the rod boundary layer were laminar. At a lower Reynolds number, nozzle input noise at noise levels in the shield were still too high for application to a quiet tunnel. At Reynolds numbers above 2.0 x 10 the the 7th power per meter, measured noise levels were generally higher than nozzle input levels, probably due to transition in the rod boundary layers. The small attenuation of nozzle input noise at intermediate Reynolds numbers for laminar rod layers at the acoustic origins is apparently due to high frequencies of noise
Inherent-Structure Dynamics and Diffusion in Liquids
The self-diffusion constant D is expressed in terms of transitions among the
local minima of the potential (inherent structure, IS) and their correlations.
The formulae are evaluated and tested against simulation in the supercooled,
unit-density Lennard-Jones liquid. The approximation of uncorrelated
IS-transition (IST) vectors, D_{0}, greatly exceeds D in the upper temperature
range, but merges with simulation at reduced T ~ 0.50. Since uncorrelated IST
are associated with a hopping mechanism, the condition D ~ D_{0} provides a new
way to identify the crossover to hopping. The results suggest that theories of
diffusion in deeply supercooled liquids may be based on weakly correlated IST.Comment: submitted to PR
Mean-atom-trajectory model for the velocity autocorrelation function of monatomic liquids
We present a model for the motion of an average atom in a liquid or
supercooled liquid state and apply it to calculations of the velocity
autocorrelation function and diffusion coefficient . The model
trajectory consists of oscillations at a distribution of frequencies
characteristic of the normal modes of a single potential valley, interspersed
with position- and velocity-conserving transits to similar adjacent valleys.
The resulting predictions for and agree remarkably well with MD
simulations of Na at up to almost three times its melting temperature. Two
independent processes in the model relax velocity autocorrelations: (a)
dephasing due to the presence of many frequency components, which operates at
all temperatures but which produces no diffusion, and (b) the transit process,
which increases with increasing temperature and which produces diffusion.
Because the model provides a single-atom trajectory in real space and time,
including transits, it may be used to calculate all single-atom correlation
functions.Comment: LaTeX, 8 figs. This is an updated version of cond-mat/0002057 and
cond-mat/0002058 combined Minor changes made to coincide with published
versio
REDD+ on the rocks? Conflict over forest and politics of justice in Vietnam
In Vietnam, villagers involved in a REDD+ (reduced emissions from deforestation and forest degradation) pilot protect areas with rocks which have barely a tree on them. The apparent paradox indicates how actual practices differ from general ideas about REDD+ due to ongoing conflict over forest, and how contestations over the meaning of justice are a core element in negotiations over REDD+. We explore these politics of justice by examining how the actors involved in the REDD+ pilot negotiate the particular subjects, dimensions, and authority of justice considered relevant, and show how politics of justice are implicit to practical decisions in project implementation. Contestations over the meaning of justice are an important element in the practices and processes constituting REDD+ at global, national and local levels, challenging uniform definitions of forest justice and how forests ought to be managed
- …
