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Anharmonic potentials in supercooled liquids: The soft-potential model

U. Zürcher* and T. Keyes†

Department of Chemistry, Boston University, Boston, Massachusetts 02215
~Received 23 October 1996!

Instantaneous normal modes~INM ! are the harmonic approximation to liquid dynamics. This is an extension
of the phonon description of lattice dynamics, in which case Bloch’s theorem shows that all modes are
extended. Long-range order is destroyed in liquids and glasses, and the INM spectrum has contributions from
both extended and localized modes. We use the soft-potential mode to describe localized modes. This model is
a high-temperature extension of the standard two-level-system model for glasses. The equilibrium position of
any atom in the liquid has only temporary character, and relaxation processes in the liquid are associated with
particles hopping over potential energy barriers. Barrier tops have negative curvature so that an INM spectrum
has an imaginary frequency~unstable! lobe in addition to the conventional stable mode contributions; con-
versely the unstable modes carry information about diffusion. We derive analytic expressions for the frequency
and temperature dependence of the unstable lobe that are in agreement with results from computer simulations.
Self-diffusion of particles in the liquid is governed by the fraction of unstable modes originating from double-
well potentials. For the diffusion constant, we find a crossover behavior from Arrhenius temperature depen-
dence to Zwanzig-Ba¨ssler dependence. We find an explicit expression for the distribution of barrier heights. In
agreement with Stillinger’s inherent structure approach to glass-forming liquids, this distribution is uniform, or
Gaussian, for high and low temperatures, respectively.@S1063-651X~97!03706-9#

PACS number~s!: 47.10.1g, 63.50.1x, 64.70.Pf

I. INTRODUCTION

Unlike liquids, solids are capable of elastic resistance to
shear stress. It is this property that explains therigidity of
solids and thefluidity of liquids. The rigidity of solids is in
agreement with the concept that atoms in a solid oscillate
around mechanical equilibrium configurations. Nevertheless,
Maxwell suggested that despite the characteristic fluidity of
liquids, atoms in a liquid vibrate around equilibrium posi-
tions @1#. In order to reconcile this apparent contradiction,
Frenkel pointed out that for any atom in a liquid, its equilib-
rium position is not permanent but rather has temporary
character@2#. Each atom performs oscillations about an equi-
librium position during a certain timetM ~‘‘Maxwell time’’ !,
until the atom jumps to a new equilibrium position at some
distance, which is of the same order of magnitude as the
mean distance between adjacent atoms. In this new position,
the atom is surrounded, partially at least, by new neighbors.

Zwanzig evokes a similar picture of liquid dynamics in
his derivation of the relation between self-diffusion and vis-
cosity of liquids~Stokes-Einstein relation! @3#. Local minima
of the potential energy surface of a many-body system divide
the configuration space of the system into smaller ‘‘cells.’’
Most of these cells are expected to correspond to amorphous
configurations, while others correspond to crystalline~or
slightly disordered! configurations. The atoms perform ap-
proximate harmonic oscillations around their respective
equilibrium positions until the liquid finds a saddle point on
the potential energy surface and jumps to another cell. Zwan-
zig assumes that these harmonic oscillations are described by

a Debye spectrum, characterized by longitudinal and trans-
verse sound velocities. Jumps between different cells are
characterized by a waiting time distribution, approximated
by a single exponential function. The diffusion constant then
follows from a Green-Kubo formula and obeys a Stokes-
Einstein law. However, as noted already by Zwanzig, this
argument does not give an independent estimate for the rate
of jumps between cells.

This solidlike approach to liquid dynamics has gained re-
newed attention in recent years primarily from molecular-
dynamics simulations@4,5#. Expanding the total potential en-
ergy around some arbitrary configuration, the second term
defines the dynamic matrix. The eigenmodes of the liquid
~‘‘instantaneous normal modes,’’ INM! are then defined by
diagonalizing the dynamic matrix. Unlike the spectrum of a
solid, the INM spectrum consists of both stable (v2.0) and
unstable (v2,0) eigenfrequencies. Unstable modes lead to
an exponential time dependence and may be identified with
barrier crossings between two equilibrium configurations in
the liquid. In fact, a relation has been proposed between the
fraction of unstable modesf u5*0

`ru(n)dn and the self-
diffusion constant,D;T1/2f u /(12 f u) @4,6#. Here,ru(n) is
the density of unstable modes andv5 in.

Diagonalization of the dynamic matrix yields three zero
modes corresponding to rigid translations in three perpen-
dicular directions. The remaining modes give the INM spec-
trum that shows a linear behavior aroundv50, r(v);uvu
~using the standard convention that the imaginary lobe is
plotted along the negative frequency axis!. For a system of
500 soft spheres, it was shown that the unstable part of the
INM spectrum contains both extended and localized modes
@7#. Such localization is a consequence of structural disorder
in the system and has previously been found for the same
system of soft spheres at zero temperature@8#. For unstable
modes, the potential energy profile along eigendirections is

*Electronic address: zurcher@chem.bu.edu
†Electronic address: keyes@chem.bu.edu ‡

World wide web: http://chem.bu.edu/ keyes

PHYSICAL REVIEW E JUNE 1997VOLUME 55, NUMBER 6

551063-651X/97/55~6!/6917~11!/$10.00 6917 © 1997 The American Physical Society



analyzed in Ref.@7#. It was found that modes withn,nc
correspond to saddle points in single-well potentials, while
modes withn.nc correspond to the system being near the
top of double-well barriers.

The fraction of unstable modes increases with increasing
temperature. The temperature and frequency dependence of
the unstable INM spectrum was analyzed by Keyes for liq-
uids in the supercooled phase@9# and by Vijayadamodar and
Nitzan for liquids in the normal phase@10#. In the normal
phase, the density followsru(n)5Anexp(2Bn2/T), while
the temperature dependence is stronger in the supercooled
phase,ru(n)5Anexp(2Cn4/T2). Here, units are such that
kB51, A is a temperature-dependent prefactor, andB and
C are constants. Because unstable modes withn,nc do not
contribute to transport in the liquid@7#, the diffusion constant
is proportional to the fraction of unstable modes with fre-
quenciesn.nc , i.e.,D} f u85*nc

` ru(n)dn. In turn, this rela-

tion suggests an exponential temperature dependence of the
viscosity,h;1/D. We have Arrhenius temperature depen-
dence in the normal phase, lnh ;const/T @11#, and Zwanzig-
Bässler temperature dependence in the supercooled phase,
lnh ;const/T2 @12#.

The glass temperature is arbitrarily defined as the tem-
perature at which log10h513 ~with @h#5 poise). Angell
proposed a classification of glass-forming liquids that is
based on the temperature dependence of the viscosity@13#.
In strong liquids, Arrhenius behavior is observed from high
temperatures where log10h524 to the glass temperature. In
fragile liquids, Arrhenius temperature dependence is ob-
served for low viscosities,24& log10h&2, while the viscos-
ity varies more strongly than Arrhenius for temperatures
close to the glass temperature,T*Tg.

At the glass temperature, an underlying first-order transi-
tion is suggested from mode-coupling theories that apply to
moderately viscous fluids@14#. In these theories, the friction
on a moving particle is ascribed to long-lived density fluc-
tuations in the liquid, which decay by diffusion. The friction
increases when the coupling between the particle and the
hydrodynamic modes increases, which leads to slower diffu-
sive decay of density fluctuations. This in turn further en-
hances the coupling, leading to a catastrophe that is identi-
fied with the glass transition.

The viscosity is very large at the glass temperature, and
the system has properties of a solid on laboratory time scales.
Stillinger and Weber have identified rigid aperiodic struc-
tures in computer simulations@15#. The motion of individual
particles in the liquid is arrested, and their structures are
stable to infinitesimal displacements. This requirement is not
sufficient, however, since the solid is a thermodynamically
stable system. Thus, its structures must be stable to finite-
amplitude thermal fluctuations. In fact, Lindemann showed
that melting occurs when the width of the mean square ther-
mal displacements of molecules becomes one-tenth of the
interparticle spacing@16#. Kirkpatrick and Wolynes have
shown that the stability analysis of aperiodic structures and
mode-coupling theories are equivalent and lead to the same
kind of transition@17#.

It was shown in Ref.@15# that groups of atoms create
local bistability, and also how they move from one equilib-
rium position to another along a collective coordinate. This

finding gives a microscopic basis for the ‘‘two-level-
system’’ model~TLS! describing low-temperature thermal
and kinetic properties of amorphous solids@18,19#. For
Lennard-Jones systems, localized modes were identified in
computer simulations and their relation to TLS was dis-
cussed@20#. A quantitative method was developed for find-
ing TLS’s in computer simulations, and a universal theory of
low-temperature properties of structural glasses was pro-
posed in Ref.@21#. Glassy anomalies between 1 and 10 K
have been attributed to additional states coexisting with
sound waves. In neutron-scattering experiments, these addi-
tional modes have been shown to be soft harmonic vibrations
with a crossover to anharmonicity at the low frequency end
@22#. The soft-potential model describes both the tunneling
and the soft vibrational modes in a glass@23#, via the addi-
tion of two parameters to the standard tunneling model. One
parameter is the frequency of the lowest maximum in the
vibrational density of the states and is directly accessible to
experiment. The second parameter is the product of the ef-
fective mass and the square of the atomic displacement, at
which the anharmonic part of the potential is dominant. This
second parameter thus describes vibrational localization and
anharmonicity in the glass. The number of particles partici-
pating in a localized mode has been estimated to be 10–100
@23#.

In this paper, we show that the frequency and temperature
dependence of the unstable INM spectrum can be derived
from the soft-potential model. We relate the distributions of
model parameters to the localization of low-lying modes. For
each mode, the soft potential defines a barrier height so that
the collection of unstable modes implies a barrier height dis-
tribution. For high temperatures, we find a uniform distribu-
tion, while for low temperatures, the distribution is a Gauss-
ian. Goldstein was first to point out a connection between the
temperature dependence of the viscosity and the energy land-
scape in glass-forming liquids@24#. Properties of the energy
landscape are reflected in the susceptibility spectrum of liq-
uids. In the normal and moderately supercooled regime, the
spectrum has a single absorption peak. In the supercooled
phase, this peak splits into a pair of maxima that correspond
to slow a and fastb processes@25#. Fast processes have
Arrhenius temperature dependence and are operative at the
glass temperature. Slow processes have non-Arrhenius tem-
perature dependence and are frozen out atTg . We identify
the low-temperature Zwanzig-Ba¨ssler behavior of the diffu-
sion constant with a-relaxation process. The high-
temperature Arrhenius behavior is then identified with
b-relaxation processes. We derive an expression for the dif-
fusion constant in terms of the finite mean-square displace-
ment of a particle in the soft potential. It is not surprising that
we find such a relation, since the INM spectrum is defined by
the short-time expansion of the liquid dynamics@5#. In short-
time experiments, such as neutron and Mo¨ssbauer scattering,
a ~glass! transition has been found in measurements of the
mean-square displacement~Debye-Waller factor! @13#.

The outline of this paper is as follows. The soft-potential
model is introduced in Sec. II, where we focus in particular
on the relation between the localization of soft modes and
properties of the INM spectrum foruvu→0. The model is
then used in Sec. III to derive the unstable frequency spec-
trum for low and high temperatures. Parts of this derivation
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have been reported elsewhere@26# but are briefly summa-
rized here for completeness. We find a frequency cutoff that
separates contributions to the spectrum from single-well and
double-well potentials. We then derive exponential tempera-
ture dependence of the diffusion constant in Sec. IV. In Sec.
V, we find the distribution of barrier heights in the low- and
high-temperature limit. Finally, we summarize and discuss
our results in Sec. VI.

II. THE SOFT-POTENTIAL MODEL

The Debye model for crystal vibrations fails to explain
the low-temperature properties of structural glasses. Below 1
K, the specific heat and the thermal conductivity have a lin-
ear and quadratic temperature dependence, respectively, i.e.,
Cp(T)}T and K(T)}T2 @18,19#. Within the tunneling
model, these universal features of glasses are shown to fol-
low from a distribution of energy differences between the
two levels that is smooth on the scale ofkBT.

At higher temperatures, the thermal conductivity reaches
a plateau and the specific heat rises faster thanT3. Within the
TLS model for glasses, the thermal conductivity above the
plateau region is explained by phonons scattering off TLS’s.
This mechanism is critically analyzed in Ref.@27#. Alterna-
tively, Karpov and Parshin suggested a mechanism in which
anharmonic modes scatter off the TLS@28#. This model as-
cribes the linear temperature dependence of thermal conduc-
tivity above the plateau temperature to a linear decrease of
the scattering rate of these heat-carrying states. In the model
of Karpov, Klinger, and Ignatiev@29#, and others@30#, both
the tunneling and soft vibrational states are described by soft
anharmonic potentials with locally varying parameters.
Buchenau and co-workers find that the two-level system and
the low-energy vibrational states can be explained by the
same distribution of localized modes@22#.

Furthermore, low-frequency (n;12100 cm21) Raman
spectra of glasses have unique features that are attributed to
collective excitations involving 10 to 100 atoms@31#. The
spectra have anharmonic contributions due to relaxation in
double-well potentials and harmonic contributions from mo-
tions in single-well potentials~the so-called Boson peak!. In
Ref. @32#, fast picosecond relaxation in supercooled liquids is
explained using soft vibrational modes and their damping.

The soft-potential model assumes modes with an effective
massM and a stabilizing fourth-order term@33#,

V0~x!5W@2D2x
21x4#. ~2.1!

Becausex is a reduced coordinate,@x#51, the coefficient
D2 is dimensionless as well. It follows that the square of
frequency,v25d2V/dx2, has the dimension of an energy,
@v2#5@W#. The restoring force constant is a random vari-
able characterized by a uniform probability distribution
p2(D2),

p2~D2!5p2
05 const, 0,D2,

V2

4W
. ~2.2!

Here, we introduce a high-frequency cutoff for soft vibra-
tional modesV. At zero temperature, the density of states

then followsg(v)52vp2(v
2/4W);v. This linear depen-

dence of the density of states is consistent with localized
behavior of soft modes@34#.

In Ref. @35#, the additional specific heat of supercooled
liquids is explained by contributions from configurational
modes. These configurational modes are identified as local
stress and are described by a linear term in the soft potential,

V~x!5W@D1x2D2x
21x4#. ~2.3!

Because the external field is not included in the definition of
the internal energy of the system, the changedV follows,
ddV5WD1d^x&. Sinced^x&5(]^x&/]D1)dD1, we have by
integration,

dV5WE D1

]^x&
]D1

dD1 . ~2.4!

Here, the average is taken with respect to the Boltzmann
distribution exp@2V(x)/T# ~in units such thatkB51),

]^x&
]D1

52
W

T
@^x2&2^x&2#. ~2.5!

We evaluate the right-hand side for zero restoring force con-
stant, D250, and find ^x2&50.338(T/W)1/2 and ^x&50.
Equation ~2.4! then gives the energy required to generate
small stress in the liquid,

dV520.169
W3/2

T1/2
D1
2 . ~2.6!

The energy required to generate a small stressD1 at D250
follows dW52dV. Buchenau and co-workers argue@33#
that thermal stress is frozen in the liquid atTg and propose
that the Boltzmann factor exp(2dW/Tg) gives the distribution
of the linear coefficientD1,

p1~D1!50.231S TgWD 3/4expF20.169S WTgD
3/2

D1
2G . ~2.7!

That is, the coefficient of the linear term of the soft potential
is a Gaussian random variable with variance
^D1

2&53.96(Tg /W)3/2. For temperaturesT@Tg , the liquid is
capable of rearranging its atomic configurations such that
thermal stress vanishes. In the limitTg→0, thermal stress
vanishes at any nonzero temperature,

p1~D1!5d~D1!, Tg→0. ~2.8!

In Eq. ~2.7!, we neglect configurational rearrangements in
the liquid, and assume that relaxation in supercooled liquids
is caused by particles hopping between potential energy
minima that are frozen in the liquid. Such rearrangements are
important at higher temperatures, and give rise to thermal
stress that depends explicitly on temperature. Stress fields in
glass-forming liquids have been investigated in molecular-
dynamics simulations@36#. It is found that the stress has
long-range order in the supercooled phase, while the normal
fluid cannot support this stress field.

The localization of soft modes is discussed in Ref.@37#.
The energy to distort a stable structure increases with the
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spatial extent of the instability. This restricts the participating
atoms to the close neighborhood of a single atom. A careful
analysis gives an estimate of up to 100 atoms participating in
a localized mode@23#. This large number of particles may
pose a difficulty in distinguishing between localized and ex-
tended modes in computer simulations. They rarely involve
more than 1000 particles and are thus capable of showing
localization of 30 particles. For an extended mode, the
atomic displacements are small, so that the anharmonicity is
experienced only via the combined action of all other modes.

III. DENSITY OF UNSTABLE MODES

In the absence of thermal stressD150, the soft potential
describes symmetric double wells,V0(x)5W@2D2x

21x2#.
At zero temperature, the density of states contains only
stable modesg(v)52vp2(v

2/4W) for 0,v,V. For D1
Þ0, the soft potential describes both single and double
wells, and the density of states depends on the distributions
of bothD1 andD2. At nonzero temperatures, the coordinate
of each soft mode is weighed by the Boltzmann factor
exp@2V(x)/T#. The density of states then follows as

g~v!52vG~v2!, ~3.1!

whereG(v2) is the density of the square of frequencies,

G~v2!5 K dS d2Vdx2
2v2D L . ~3.2!

Here, the average is taken with respect to the coordinatex
and the parameters of the soft potential. At nonzero tempera-
tures, the density of states contains stable (v2.0) as well as
unstable modes (v2,0). The fraction of unstable modes
increases with increasing temperature.

A temperature scale enters via the variance of the linear
term of the soft potential,̂D1

2&53.96(Tg /W)3/2. We con-
sider the supercooled phase of the liquid above the glass
temperature,T.Tg . Introducing scaled coefficients and co-
ordinates,

D15S TgWD 3/4D̃1 , ~3.3!

D25S TgWD 1/2D̃2 , ~3.4!

x5S TgWD 1/4x̃, ~3.5!

the ratioV/T follows,

V

T
5
Tg
T

@D̃1x̃2D̃2x̃
21 x̃ 4#, ~3.6!

so that the temperature enters the density of states via the
combinationTg /T only. In particular, the Boltzmann factor
is independent of the energy scaleW. Below we take the
limit W→0 and then consider the limitsT→0 andTg→0,
such that the ratioT/Tg is constant. We demonstrate that in
this limit, the density of states is uniquely defined.

Furthermore, we may calculate the density of states for a
constant temperatureT and then study two limiting cases by
varying the glass temperatureTg . For T/Tg5O(1), we re-
cover the low-temperature limit while forT/Tg→`, the
high-temperature limit follows. In the latter case,Tg50 and
the linear term of the soft potential vanishes, i.e.,
p1(D1)5d(D1).

Unstable modesv2,0 have imaginary frequencies,
v5 in. From Eq.~3.2!, the density of unstable modes fol-
lows:

Gu~n2!5 K dS d2Vdx2
1n2D L . ~3.7!

For a fixed pair of coefficients (D1 ,D2), we first take the
average with respect to the coordinatex. Since
d2V/dx252n25W@22D2112x2#, the roots are indepen-
dent ofD1,

xn
656

1

A12
A2D22n2/W. ~3.8!

It follows that for a fixed frequencyn, the coefficientD2 is
bounded from below,

D2>Dc5
n2

2W
. ~3.9!

Because the coordinate is weighted by the Boltzmann fac-
tor exp@2V(x)/T#, the average follows as

K dS d2Vdx2
1n2D L

x

5
1

Nx
H expS 2

V~xn
1!

T D 1expS 2
V~xn

2!

T D J ,
~3.10!

where

V~xn
6!5WD1xn

61V0~xn
6!. ~3.11!

In Eq. ~3.10!, the normalization is given by
Nx5*2`

` exp@2V(x)/T#dx. For D150, the potential has two
equivalent minima,

V0~xmin
6 !52

D2
2

4
, ~3.12!

at the coordinates

xmin
6 56AD2

2
. ~3.13!

The double-well structure is preserved for small values of
D1. Defining Q52(D2/6)

31(D1/8)
2, double and single

wells follow forQ,0 andQ.0, respectively. For a double-
well potential, we thus have the inequalityD2

3.(27/8)D1
2.

We recall thatD1 is a Gaussian random variable with zero
mean and variancêD1

2&53.96(Tg /W)3/2. Thus, the soft po-
tential has double-well structure for sufficiently large restor-
ing force constants,D2

3.13.36(Tg /W)3/2. For a fixed fre-
quency n, the coefficient D2 is bounded from below
D2.n2/2W; cf. Eq. ~3.9!. We conclude that for large fre-
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quencies,n.nc , the density of unstable states is dominated
by contributions from double wells, while for small frequen-
cies, n,nc , it is dominated by contributions from single
wells. This frequency cutoffnc depends on the product of the
glass temperatureTg and the energy scaleW,

nc.2.18~TgW!1/4. ~3.14!

In the limit Tg→0, the cutoff is arbitrarily small,nc→0, and
all unstable modes originate from double-well potentials.

For a large restoring force constant, the linear term of the
soft potential is a small perturbation. In quadratic order in
D1, the coordinates of the potential minima are given by
x̃min

6 56AD2/22D1/4D27(3/16)AD2/2D1
2/D2

3. The poten-
tial minima then follow as Ṽmin5W@2D2

2/4
6D1AD2/22D1

2/8D2#. For a double-well potential, we have
D2
2/4@D1

2/8D2, and the quadratic correction of the potential
can be neglected. It follows that the Boltzmann distribution
is a superposition of two Gaussians, and the normalization is
given by

Nx5A pT

2WD2
expS 2

V0~xmin
6 !

T D H expS 2
WD1

T
xmin

1 D 1expS 2
WD1

T
xmin

2 D J , ~3.15!

whereV0(xmin
1 )5V0(xmin

2 )[V0(xmin
6 ).

We choose as a reference point the inflection point of the symmetric double welld2V0(x)/dx
250,

x05AD2

6
, ~3.16!

and find for nonzero frequenciesn2Þ0,

K dS d2Vdx2
1n2D L

x

.A2WD2

pT
expS 2

1

T
@V0~x0!2V0~xmin!#2

WuD1u
T

@xmin2x0# D
3expS 2

1

T
@V0~xn!2V0~x0!#2

WuD1u
T

@x02xn# D , ~3.17!

wherexn5xn
152xn

2 andxmin5xmin
1 5xmin

2 . The density of states of unstable modes now follows by taking the limitW→0 and
then considering the average with respect to the parameters of the soft potential; cf. the discussion following Eq.~3.6!.

Because the potentialV0(x) vanishes asW→0, the argument of the exponential function on the RHS is small in this limit.
We first take the average with respect to the uniform distribution ofD2 and truncate the cumulant expansion at the first term,

K dS d2Vdx2
1n2D L

x,D2

.A2W^D2&
pT

expS 2
1

T
^@V0~x0!2V0~xmin!#&D2

2
WuD1u
T

^@xmin2x0#
2&D2

1/2D
3expS 2

1

T
^@V0~xn!2V0~x0!#&D2

2
WuD1u
T

^@x02xn#2&D2

1/2D . ~3.18!

Here, we replaced̂@xmin2x0#&D2 and ^@x02xn#&D2
by ^@xmin2x0#

2&D2
1/2 and ^@x02xn#2&D2

1/2, respectively. We recall from Eq.

~3.9! that for a fixed frequencyn, the restoring constant is bounded from below,D2>n2/2W. We readily find
^D2&.@V2/8W1n2/4W#. Equations~3.8! and ~3.16! then give ^x0

21xn
2&5V2/24W and ^x0xn&5(12W)21AV4/162n4/4

.V2/48W2n4/24WV2 for n2→0. It follows that

K dS d2Vdx2
1n2D L

x,D2

.A V2

4pT
expS 2

1

432

V4

WT
2

1

3A10
W1/2VuD1u

T
2

1

144

V2n2

WT
2

1

A12
W1/2n2uD1u

VT D . ~3.19!

The quantityGu(0) now follows by settingn50 and taking the average with respect toD1. We have

K dS d2Vdx2 D L
x,D2

.A V2

4pT
expS 2

1

432

V4

WT
2

1

3A10
W1/2VuD1u

T D . ~3.20!
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Since^D1
2&53.96(Tg /W)3/2, the variance ofD1 diverges as

W→0. For a fixed energy scaleW, the combination
W1/2VuD1u/3A10T becomes large in the limituD1u→`.
Similarly, the average ^exp(W1/2VuD1u/3A10T)&D1

is determined by the behavior of the probability
density p1(D1) for large values of D1. For
W.0, we replace ^exp(2W1/2VuD1u/3A10T)&D1

by

1/̂ exp(W1/2VuD1u/3A10T)&D1
and then consider the limit

W→0 such that the variance of the scaled Gaussian random
variableD185W3/4D1 is finite, ^D18

2&,`. A Gaussian inte-
gration gives ^exp(W1/2VuD1u/3A10T)&D1

5exp(Tg
3/2V2/

20W1/2T2). We then have

Gu~0!.A V2

4pT
expS 2

1

432

V4

WT
2
1

20

Tg
3/2V2

W1/2T2D .
~3.21!

We introduce a dimensionless frequency and temperature,

V85
V

AW
, ~3.22!

T85
T

W
, ~3.23!

and find

Gu~0!.A V2

4pT
expS 2

1

432

V4

T
2
1

20

Tg
3/2V2

T2 D ,
~3.24!

where we replaced primed quantities by unprimed ones to
simplify the notation.

We estimate the relative magnitude of the two terms in
the argument of the exponential function by settingT5Tg .
We have Gu(0,T5Tg).AV2/4pTgexp(2V4/432Tg
2V2/20Tg

1/2). The first term dominates forV.4.64Tg
1/4.

Sincenc52.18Tg
1/4 @cf. Eq. ~3.14!#, we have for all tempera-

turesT.Tg ,

Gu~0!.A V2

4pT
expS 2

1

432

V4

T D , nc,
V

2
. ~3.25!

That is,Gu(0) is independent of the glass temperatureTg .
We calculateGu(n

2) in a similar fashion. We insert Eq.
~3.25! into Eq. ~3.19!,

Gu~n2!

Gu~0!
.

exp~2V2n2/144WT!

^exp~W1/2n2uD1u/A12VT!&D1

. ~3.26!

A Gaussian integration gives

Gu~n2!

Gu~0!
.expS 2

1

144

V2n2

WT
2
1

8

Tg
3/2n4

WV2T2D . ~3.27!

We introduce a dimensionless frequency,

n85
n

AW
, ~3.28!

cf. Eq. ~3.22!, and find

Gu~n2!

Gu~0!
.expS 2

1

144

V2n2

T
2
1

8

Tg
3/2n4

V2T2 D . ~3.29!

We observe that the temperature-dependent density of un-
stable modes is characterized by the glass temperatureTg
and the upper frequency cutoffV.

The density of states is given bygu(n)52nGu(n
2); cf.

Eq. ~3.1!. The high-temperature limit is obtained by setting
Tg50; cf. the discussion following Eq.~3.6!. We recover the
Arrhenius temperature dependence of the unstable density
for liquids in the normal phase that has been proposed by
Vijayadamodar and Nitzan@10#,

gu~n!.2Gu~0!n expS 2
1

144

V2n2

T D , T@Tg .

~3.30!

For lower temperatures,T*Tg , we recover the Zwanzig-
Bässler temperature dependence of the unstable density for
liquids in the supercooled phase that has first been proposed
by Keyes@9#,

gu~n!.2Gu~0!n expS 2
1

8

Tg
3/2n4

V2T2 D , T*Tg . ~3.31!

Equations~3.30! and~3.31! together with the frequency cut-
off nc52.18Tg

1/4 @cf. Eq.~3.14!#, are the central results of this
section. Below we discuss implications of the frequency and
temperature dependence of the unstable INM spectrum to
dynamic properties of the liquid.

IV. DIFFUSION CONSTANT

Instantaneous normal modes are defined via theshort-
timeexpansion of the equations of motion of individual par-
ticles in liquids, and solidlike aspects of liquid dynamics are
emphasized. Nevertheless, Keyes and co-workers have dem-
onstrated the usefulness of INM analysis to describelong-
timedynamical properties of cold liquids@4#. More recently,
collective modes were used in Ref.@38# to describe self-
diffusion in hot liquids above the melting point. The self-
diffusion coefficient is approximated by the ratio of the time
spent in a valleytv to the time spent in crossing a barrier
tb ,D.T1/2tb /tv . For liquid dynamics on short time scales,
unstable modes are the signature of barrier crossings. The
fraction of unstable modes is given byf u5*gu(n)dn @6#.
Using transition rate theory, Keyes estimates that short-time
and long-time properties are related to each other,tb /tv
} f u /(12 f u) @9#. Several other approximations suggest that
any strongT dependence ofD follows from the relation,
D(T); f u(T).

Unstable modes originate from both double and single
wells. Because particle transport follows from hopping pro-
cesses, unstable modes from single wells should not contrib-
ute to the self-diffusion constant. For frequenciesn.nc , all
unstable modes originate from double wells, whereas for
n,nc , as we just have seen, the density of unstable modes
has large contributions from single wells. It follows that
INM theories of the diffusion constant should employ modes
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with n.nc only; wheref u appeared in earlier work, it should
be replaced byf u85*nc

` g(n)dn. Because the density of states

of unstable modes has exponential frequency dependence, a
nonzero cutoff gives a fraction that is exponentially small,
f u8;gu(nc),1. It then follows that the diffusion constant is
exponentially small as well,

D;g~nc!. ~4.1!

In dimensionless units, the cutoff frequency depends only
on the glass temperature; cf. Eq.~3.14!,

nc52.18Tg
1/4. ~4.2!

Inserting Eqs.~4.1! and~4.2! into Eq.~3.30!, we find Arrhen-
ius behavior@11# for high temperatures,

D;expS 2
1

36

V2Tg
1/2

T D , T@Tg . ~4.3!

For lower temperatures, Zwanzig-Ba¨ssler behavior@12# fol-
lows from Eq.~3.31!,

D;expS 22
Tg
5/2

V2T2D , T*Tg . ~4.4!

Equations~4.3! and ~4.4! give the crossover temperature
Tc , V2Tg

1/2/36Tc52Tg
5/2/V2Tc

2 , or

Tc572
Tg
2

V4 . ~4.5!

At the crossover temperature, the diffusion constant
Dc5D(Tc) is given byDc;exp(2V6/2592Tg

3/2).
We readily express the crossover behavior of the diffusion

constant in terms of characteristic energy scales of the soft
potential. We have found non-Arrhenius temperature depen-
dence in the case when the linear term of the soft potential is
large compared to the quadratic term. Setting
WD1x5WD2x

2, we find that the linear term is larger than
the quadratic term for small displacementsx,xc , while the
quadratic term is larger forx.xc . Here,xc5D1 /D2 and the
crossover energy follows asEc5WD1

2/D2. We replaceD1
2

by its averagêD1
2& and set the restoring force equal to its

maximum value; cf. Eqs.~2.2!. This gives a lower bound for
energies characterizing thermal stress in the liquid,

Ea516
Tg
3/2

V2 . ~4.6!

In the absence of thermal stress,D150, the soft potential is
given byV0(x)5W@2D2x

21x4#. The barrier height of the
symmetric double well follows asDV05WD2

2/4. Setting
D25V2/4W, we find the characteristic energy associated
with soft vibrational modes in the liquid,

Eb5
V4

64
. ~4.7!

In Eqs.~4.6! and~4.7!, we introduce dimensionless energies,
E/W→E; cf. Eq. ~3.23!.

From Eq. ~4.5!, we have Tc /Tg572Tg /V
4. Since

(Ea /Eb)
2/35102Tg /V

4, we find

Tc
Tg

.0.7SEa

Eb
D 2/3. ~4.8!

At the crossover temperature, the diffusion constant follows,

D~Tc!;expS 20.4
Eb

Ea
D . ~4.9!

Thus, the crossover between Arrhenius and Zwanzig-Ba¨ssler
behavior depends only on the ratioEa /Eb . ForEa.Eb , we
haveTc.Tg and Zwanzig-Ba¨ssler temperature dependence
follows for some nonzero temperature range aboveTg . For
Eb.Ea , on the other hand, the diffusion constant is arbi-
trarily small at T5Tc , and Arrhenius temperature depen-
dence follows for all temperatures aboveTg . That is,
Ea.Eb applies to fragile liquids, whereasEb.Ea applies
to strong liquids@13#.

Stillinger relates various static and dynamic properties of
glass-forming liquids to the multidimensional complex to-
pography of the collective potential energy function@39#.
The topography of strong liquids is uniformly rough, and
only b-relaxation processes are relevant. In fragile liquids,
individual local minima~‘‘basins’’! are organized in deeper
potential energy wells~‘‘craters’’!. It is only at high tempera-
tures that particles explore regions of the configuration space
with uniformly rough topography, while at lower tempera-
tures, particles surmount larger and wider potential energy
barriers. This transition gives rise to the bifurcation of the
temperature dependence of the peak relaxation frequency in
liquids. In the equilibrium liquid range, the single absorption
maximum peak has Arrhenius temperature dependence. This
single maximum splits into a pair of maxima in the super-
cooled regime. The peak corresponding to fastb ~‘‘second-
ary’’ ! relaxation has Arrhenius behavior and persists even in
the glassy phase. The peak originating from slowa ~‘‘pri-
mary’’! relaxation has non-Arrhenius behavior and is frozen
out at the glass temperature. The connection with the present
work is made by identifyingEa andEb with a lower limit of
energy barriers of craters and the characteristic energy of
basins, respectively.

In fact, a more explicit connection can be made between
high-temperature behavior and fast dynamic processes in liq-
uids. In the high-temperature limit, the soft potential de-
scribes symmetric double wells. On short time scales, the
particles perform harmonic oscillations around the potential
minima. The mean square displacement~MSD! of a har-
monic oscillator is given bŷ x2&v5T/v2. Replacing the
square of the frequency by the upper cutoff for the restoring
force constant, we find the MSD characterizing fast pro-
cesses in liquids,

^x2&b5
4T

V2 . ~4.10!

The linear term of the soft potential describes stress that is
frozen in the liquid at the glass temperature. For zero restor-
ing force constant, D250, the MSD is given by

55 6923ANHARMONIC POTENTIALS IN SUPERCOOLED . . .



^x2&50.338T1/2; cf. the discussion following Eq.~2.5!. Set-
ting T5Tg , we find the static contribution to the MSD,

^x2&static50.338Tg
1/2. ~4.11!

We use Eqs.~4.10! and ~4.11! to rewrite the high-
temperature limit of the diffusion constant,

D;expS 2
1

3

^x2&static
^x2&b

D , T@Tg . ~4.12!

Buchenau and Zorn report neutron time-of-flight measure-
ments of atomic displacements for frequencies above
1010Hz in glassy, liquid, and crystalline selenium@40#. They
observe a weak temperature dependence of the mean square
displacement in the ordered phase and a strong temperature-
dependent enhancement in the disordered phase. They find a
linear relation between the logarithm of the viscosity and the
inverse of the enhancement of the MSD. Since the viscosity
is proportional to the inverse of the diffusion constant, this
relation is in agreement with our prediction; cf. Eq.~4.12!.

V. DISTRIBUTION OF BARRIER HEIGHTS

Following our discussion of the diffusion constant, the
density of states of unstable modes reflects the topography of
the potential energy landscape of liquids. The landscape con-
sists of local minima separated by potential barriers, and is
thus characterized by the distribution of barrier heights. In
the soft-potential model, we define a barrier height for each
pair of parameters (D1 ,D2). We have

DV5V~xn!2V~xmin!, ~5.1!

wherexn and xmin are given by the rootsd2V/dx21n250
and dV/dx50, respectively; cf. Eqs.~3.8! and ~3.13!. The
distribution of barrier heights is then defined as

P~E;n!5^d~E2DV!&D1 ,D2
. ~5.2!

Here,P(E;n) depends on the frequencyn through the de-
pendence on the coordinatexn . We calculate the average on
the right-hand side by inserting the Fourier representation of
the d function, d(x)5(1/2p)*2`

` dqexp(iqx). We inter-
change the order of taking the average with respect to the
parameters of the soft potential and integration,

P~E;n!5
1

2pE2`

`

dqexp~ iqE!^exp~2 iqDV!&D1 ,D2
.

~5.3!

The discussion of the preceding section suggests that bar-
rier heights have different distributions in the high- and low-
temperature limits. ForT@Tg , we can neglect the linear
term of the soft potential,V(x).V0(x)5W@2D2x

21x4#,

P~E;n!5
1

2pE2`

`

dqexp~ iqE!^exp~2 iqDV0!&D2
, T@Tg .

~5.4!

For W→0, we replace ^exp(2iqDV0)&D2 by
exp(2iq^DV0&D2) @cf. Eq. ~3.18!#,

P~E;n!5
1

2pE2`

`

dqexp~ iq@E2^DV0&D2
# !, T@Tg .

~5.5!

Since

V0~xn!2V0~xmin!5@V0~xn!2V0~x0!#

1@V0~x0!2V0~xmin!#

~wherex0 is the inflection point ofV0(x) @cf. Eq. ~3.16!#!,
we readily find^DV0&D2

5V2n2/144W1V4/432W. We in-
troduce a dimensionless energy

E85
E

W
, ~5.6!

along with the dimensionless frequenciesV85V/AW and
n85n/AW; cf. Eqs. ~3.22! and ~3.28!. We find
P(E;n)5(1/2p)*2`

` dq exp(2iq@E2V2n2/1442V4/432#),
where we replaced primed quantities by unprimed ones. The
q integration now yields P(E;n)5d(E2n2V2/144
2V4/432). The characteristic energy for fast processes in
the liquid is given byEb5V4/64; cf. Eq.~4.7!. We finally
find the barrier height distribution in the high-temperature
limit,

P~E;n!5dSE2
4

27
Eb2

1

18
AEbn2D , T@Tg . ~5.7!

Thus, fast processes in the liquid are associated with a po-
tential energy landscape that is uniformly rough.

For lower temperatures, the leading frequency depen-
dence of the potential differenceDV originates from the lin-
ear term of the soft potential,

DV.@V0~x0!2V0~xmin!#2WuD1u@x02xn#, T*Tg .
~5.8!

The distribution of barrier heights now follows by taking the
average with respect to both parameters of the soft potential
@cf. Eq. ~5.3!#,

P~E;n!5~1/2p!*2`
` dq

3exp~ iqE!^exp~2 iq@V0~x0!2V0~xmin!#

1 iqWuD1u@x02xn#!&D1 ,D2
.

ForW→0, we proceed by first taking the average with re-
spect to the restoring force constantD2,

P~E;n!5
1

2pE2`

`

dqexp~ iq$E2^@V0~x0!2V0~xmin!#&D2
%!^exp~ iqWuD1u^@x02xn#2&D2

1/2!&D1
, T*Tg . ~5.9!

Using ^@x02xn#2&D2
5n4/12WV2, we find
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P~E;n!5
1

2pE2`

`

dqexp~ iq@E2V4/432W# !^exp~ iqW1/2n2uD1u/A12V!&D1
, T*Tg . ~5.10!

The parameterD1 is a Gaussian random variable with variance^D1
2&53.96(Tg /W)3/2. In particular, the variance diverges as

W→0, and we cannot use a cumulant expansion to calculate the average with respect toD1; cf. the discussion preceding Eq.
~3.21!. Rather, a Gaussian integration gives^exp(2iqW1/2n2uD1u/A12V)&D1

5exp(2q2Tg
3/2n4/8W1/2V2). We then have

P~E;n!5
1

2pE2`

`

dqexp~ iq@E2V4/432W# !expS 2
Tg
3/2n4

8W1/2V2q
2D , T*Tg . ~5.11!

It follows thatP(E;n)5(A2W1/4V/ApTg
3/4n2)exp(22W1/2V2@E2V4#2/Tg

3/2n4).
As above, we introduce a dimensionless energyE85E/W and frequenciesn85n/AW andV85V/AW. In Eq. ~4.6!, we

have found the characteristic energy for slow processes in the liquid,Ea516Tg
3/2/V2. We obtain

P~E;n!5
1

ApEan4/32
expS 2

32

Ean4 FE2
4

27
EbG2D , T*Tg . ~5.12!

Thus, slow processes in the liquid are associated with a rug-
ged potential energy landscape characterized by a Gaussian
distribution of barrier heights.

The two limiting barrier height distributions are in agree-
ment with the temperature dependence of the diffusion con-
stant. High-temperature Arrhenius behavior implies a single
potential energy barrier for viscous flow in the liquid, while
low-temperature Zwanzig-Ba¨ssler behavior of diffusion is
characteristic for random energy models@41#.

VI. SUMMARY AND DISCUSSION

The solidlike approach to liquid dynamics has been re-
vived in recent years largely by computer simulations. In-
stantaneous normal modes are obtained by diagonalizing the
dynamic matrix for a representative configuration that has
been selected from a molecular-dynamics simulation. The
INM spectrum is obtained from a snapshot of the liquid and
describes the dynamics at short times. Nevertheless, follow-
ing Zwanzig’s normal mode description of self-diffusion in
liquids, the INM spectrum has been used to describe liquid
dynamics on long time scales as well. This paper is a step
towards a clearer understanding of the relation between prop-
erties of the INM spectrum and those governing the time
evolution of the liquid on long time scales. In supercooled
liquids, the viscosity varies over more than 10 decades.
Goldstein, and later Stillinger, showed that exponential tem-
perature dependence of viscous flow can be understood from
a topographic viewpoint of the potential energy landscape in
liquids. In this paper, we have shown that exponential fre-
quency and temperature dependence of the unstable lobe of
the INM spectrum is consistent with the inherent structure
approach to liquid dynamics.

We started by first establishing the relation between the
localized nature of low-lying vibrational modes and their de-
scription with the soft-potential model. We assumed that de-
fects are frozen in at the glass temperature, giving rise to
stress in liquids. These properties define the model from
which we then calculated the density of unstable modes. In
the high- and low-temperature limit, we recovered exponen-

tial frequency and temperature dependence that were previ-
ously found in computer simulations. We further found a
lower ~imaginary! frequency cutoff separating contributions
from single- and double-well potentials to the unstable den-
sity of states. Using approximate formulas relating the frac-
tion of unstable modes to the diffusion constant, we found
Arrhenius temperature dependence of the diffusion constant
with a crossover to Zwanzig-Ba¨ssler dependence for tem-
peratures close toTg . These two temperature regimes are
known to correspond to landscapes with uniform and Gauss-
ian barrier height distributions, respectively. The barrier
height of a single mode is defined from the soft potential. We
derived the above energy distributions in the appropriate lim-
its. For a variety of systems~glass! transitions have been
identified in experiments probing the short-time dynamics.
Buchenau and Zorn have proposed a linear relation between
the viscosity and the inverse of the mean-square displace-
ment of the system’s particles for high frequencies. We re-
covered this relation from our expression for the high-
temperature limit of the diffusion constant, and thus
identified the high-temperature limit with fastb-relaxation
processes and the low-temperature limit with slow
a-relaxation processes.

Analytical theories for the entire INM spectrum that have
previously been proposed are based on the connection be-
tween the Laplace transform of the return probability of a
random walker and the phonon density of states in disor-
dered systems@42#. Wu and Loring generalize this approach
to higher dimensions, in which case atomic motions along
d orthogonal directions are coupled@43#. They use
configuration-averaged transport properties of a random
walker to calculate the frequency spectrum@44#. Using a
two-body approximation to the self-energy, they derive ana-
lytical expressions for the density of states that are in good
agreement with results from computer simulations of
Lennard-Jones systems. The Green’s-function approach to
INM spectra is further elaborated on in a paper by Wan and
Stratt @45#. Starting from expressions for the Green’s func-
tion derived from the replica method, they use a diagram-
matic formulation to incorporate many-body effects in their
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theory. This refined theory gives a better representation of
the unstable lobe of the INM spectrum. In an earlier version
of this theory@46#, the distribution of the eigenvalues of the
dynamic matrix follows the ‘‘semicircle law.’’ Such a distri-
bution is familiar from the theory of random matrices@47#,
and has recently been derived by Zwanzig for a highly con-
nected random master equation@48#. The theories of Refs.
@43# and@45# do not give simple analytic expressions for the
frequency dependence of the stable and unstable lobe of the
INM spectrum, so that a comparison with the present theory
cannot readily be made. This would be highly desirable how-
ever, since the analytic expressions derived here have al-
lowed us to associate unstable instantaneous normal modes
with fast and slow dynamic processes in the liquid. The com-
plexity of the Green’s function formalism reflects the fact
that the phononlike coordinates used in the random-walk ap-
proach do not easily describe modes localized in cooperative
rearrangement regions of finite size@49#.

In this paper, we considered the unstable density of states
only for the limiting cases of low,T*Tg , and high tempera-
tures,T@Tg . For intermediate temperatures, MD simula-
tions of a Lennard-Jones system indicate that the frequency
dependence of the unstable density interpolates smoothly be-
tween these limiting cases. Indeed, we show@50# that an

algebraic sum of the high- and low-temperature limits@cf.
Eqs.~3.30! and~3.31!#, gives an excellent fit to the unstable
density for a broad temperature range 0.5,T,20 ~whereT
is in reduced Lennard-Jones units!. This form of the unstable
density suggests that thermal stress varies in space, and the
configuration space of the system consists of regions whose
topographies are characterized by uniform and Gaussian dis-
tributions of barrier heights. It is shown in Ref.@51# that the
number of particles in correlated regions can be estimated
from an analysis of the eigenvectors of the dynamic matrix.
Thus, instantaneous normal modes examine the energy land-
scape as well as spatial correlations in the liquid. Such spa-
tial heterogeneity has recently been used to explain enhanced
translational diffusion of large probe molecules in a super-
cooled liquid (o-terphenyl! @52,53#. Spatial heterogeneity, in
addition to dynamic heterogeneity, plays a major role in
theories of the glass transition@54–57#, and has been pro-
posed as a possible mechanism for nonexponential relaxation
in supercooled liquids@58#.
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