2,888 research outputs found
Electron-Acoustic Phonon Energy Loss Rate in Multi-Component Electron Systems with Symmetric and Asymmetric Coupling Constants
We consider electron-phonon (\textit{e-ph}) energy loss rate in 3D and 2D
multi-component electron systems in semiconductors. We allow general asymmetry
in the \textit{e-ph} coupling constants (matrix elements), i.e., we allow that
the coupling depends on the electron sub-system index. We derive a
multi-component \textit{e-ph}power loss formula, which takes into account the
asymmetric coupling and links the total \textit{e-ph} energy loss rate to the
density response matrix of the total electron system. We write the density
response matrix within mean field approximation, which leads to coexistence of\
symmetric energy loss rate and asymmetric energy loss rate
with total energy loss rate at temperature
. The symmetric component F_{S}(T) F_{S}(T)\propto T^{n_{S}}n_{S}F_{A}(T). Screening strongly
reduces the symmetric coupling, but the asymmetric coupling is unscreened,
provided that the inter-sub-system Coulomb interactions are strong. The lack of
screening enhances and the total energy loss rate .
Especially, in the strong screening limit we find . A
canonical example of strongly asymmetric \textit{e-ph} matrix elements is the
deformation potential coupling in many-valley semiconductors.Comment: v2: Typos corrected. Some notations changed. Section III.C is
embedded in Section III.B. Paper accepted to PR
Instantaneous Normal Mode analysis of liquid HF
We present an Instantaneous Normal Modes analysis of liquid HF aimed to
clarify the origin of peculiar dynamical properties which are supposed to stem
from the arrangement of molecules in linear hydrogen-bonded network. The
present study shows that this approach is an unique tool for the understanding
of the spectral features revealed in the analysis of both single molecule and
collective quantities. For the system under investigation we demonstrate the
relevance of hydrogen-bonding ``stretching'' and fast librational motion in the
interpretation of these features.Comment: REVTeX, 7 pages, 5 eps figures included. Minor changes in the text
and in a figure. Accepted for publication in Phys. Rev. Let
Inherent-Structure Dynamics and Diffusion in Liquids
The self-diffusion constant D is expressed in terms of transitions among the
local minima of the potential (inherent structure, IS) and their correlations.
The formulae are evaluated and tested against simulation in the supercooled,
unit-density Lennard-Jones liquid. The approximation of uncorrelated
IS-transition (IST) vectors, D_{0}, greatly exceeds D in the upper temperature
range, but merges with simulation at reduced T ~ 0.50. Since uncorrelated IST
are associated with a hopping mechanism, the condition D ~ D_{0} provides a new
way to identify the crossover to hopping. The results suggest that theories of
diffusion in deeply supercooled liquids may be based on weakly correlated IST.Comment: submitted to PR
The Potential Energy Landscape and Mechanisms of Diffusion in Liquids
The mechanism of diffusion in supercooled liquids is investigated from the
potential energy landscape point of view, with emphasis on the crossover from
high- to low-T dynamics. Molecular dynamics simulations with a time dependent
mapping to the associated local mininum or inherent structure (IS) are
performed on unit-density Lennard-Jones (LJ). New dynamical quantities
introduced include r2_{is}(t), the mean-square displacement (MSD) within a
basin of attraction of an IS, R2(t), the MSD of the IS itself, and g_{loc}(t)
the mean waiting time in a cooperative region. At intermediate T, r2_{is}(t)
posesses an interval of linear t-dependence allowing calculation of an
intrabasin diffusion constant D_{is}. Near T_{c} diffusion is intrabasin
dominated with D = D_{is}. Below T_{c} the local waiting time tau_{loc} exceeds
the time, tau_{pl}, needed for the system to explore the basin, indicating the
action of barriers. The distinction between motion among the IS below T_{c} and
saddle, or border dynamics above T_{c} is discussed.Comment: submitted to pr
Instantaneous Normal Mode Analysis of Supercooled Water
We use the instantaneous normal mode approach to provide a description of the
local curvature of the potential energy surface of a model for water. We focus
on the region of the phase diagram in which the dynamics may be described by
the mode-coupling theory. We find, surprisingly, that the diffusion constant
depends mainly on the fraction of directions in configuration space connecting
different local minima, supporting the conjecture that the dynamics are
controlled by the geometric properties of configuration space. Furthermore, we
find an unexpected relation between the number of basins accessed in
equilibrium and the connectivity between them.Comment: 5 pages, 4 figure
Time and Space Bounds for Reversible Simulation
We prove a general upper bound on the tradeoff between time and space that
suffices for the reversible simulation of irreversible computation. Previously,
only simulations using exponential time or quadratic space were known.
The tradeoff shows for the first time that we can simultaneously achieve
subexponential time and subquadratic space.
The boundary values are the exponential time with hardly any extra space
required by the Lange-McKenzie-Tapp method and the ()th power time with
square space required by the Bennett method. We also give the first general
lower bound on the extra storage space required by general reversible
simulation. This lower bound is optimal in that it is achieved by some
reversible simulations.Comment: 11 pages LaTeX, Proc ICALP 2001, Lecture Notes in Computer Science,
Vol xxx Springer-Verlag, Berlin, 200
The nonmesonic weak decay of the hypertriton
The nonmesonic decay of the hypertriton is calculated based on a hypertriton
wavefunction and 3N scattering states, which are rigorous solutions of 3-body
Faddeev equations using realistic NN and hyperon-nucleon interactions. The
pion-exchange together with heavier meson exchanges for the transition is considered. The total nonmesonic decay rate is found to be 0.5%
of the free decay rate. Integrated as well as differential decay
rates are given. The p- and n- induced decays are discussed thoroughly and it
is shown that the corresponding total rates cannot be measured individually.Comment: 27 pages, 20 figures, revtex, submitted to Phys. Rev.
Mean-atom-trajectory model for the velocity autocorrelation function of monatomic liquids
We present a model for the motion of an average atom in a liquid or
supercooled liquid state and apply it to calculations of the velocity
autocorrelation function and diffusion coefficient . The model
trajectory consists of oscillations at a distribution of frequencies
characteristic of the normal modes of a single potential valley, interspersed
with position- and velocity-conserving transits to similar adjacent valleys.
The resulting predictions for and agree remarkably well with MD
simulations of Na at up to almost three times its melting temperature. Two
independent processes in the model relax velocity autocorrelations: (a)
dephasing due to the presence of many frequency components, which operates at
all temperatures but which produces no diffusion, and (b) the transit process,
which increases with increasing temperature and which produces diffusion.
Because the model provides a single-atom trajectory in real space and time,
including transits, it may be used to calculate all single-atom correlation
functions.Comment: LaTeX, 8 figs. This is an updated version of cond-mat/0002057 and
cond-mat/0002058 combined Minor changes made to coincide with published
versio
Risk of Suicide Attempt in Adopted and Nonadopted Offspring
OBJECTIVE: We asked whether adoption status represented a risk of suicide attempt for adopted and nonadopted offspring living in the United States. We also examined whether factors known to be associated with suicidal behavior would mediate the relationship between adoption status and suicide attempt. METHODS: Participants were drawn from the Sibling Interaction and Behavior Study, which included 692 adopted and 540 nonadopted offspring and was conducted at the University of Minnesota from 1998 to 2008. Adoptees were systematically ascertained from records of 3 large Minnesota adoption agencies; nonadoptees were ascertained from Minnesota birth records. Outcome measures were attempted suicide, reported by parent or offspring, and factors known to be associated with suicidal behavior including psychiatric disorder symptoms, personality traits, family environment, and academic disengagement. RESULTS: The odds of a reported suicide attempt were ∼4 times greater in adoptees compared with nonadoptees (odds ratio: 4.23). After adjustment for factors associated with suicidal behavior, the odds of reporting a suicide attempt were reduced but remained significantly elevated (odds ratio: 3.70). CONCLUSIONS: The odds for reported suicide attempt are elevated in individuals who are adopted relative to those who are not adopted. The relationship between adoption status and suicide attempt is partially mediated by factors known to be associated with suicidal behavior. Continued study of the risk of suicide attempt in adopted offspring may inform the larger investigation of suicidality in all adolescents and young adults
Saddles in the energy landscape probed by supercooled liquids
We numerically investigate the supercooled dynamics of two simple model
liquids exploiting the partition of the multi-dimension configuration space in
basins of attraction of the stationary points (inherent saddles) of the
potential energy surface. We find that the inherent saddles order and potential
energy are well defined functions of the temperature T. Moreover, decreasing T,
the saddle order vanishes at the same temperature (T_MCT) where the inverse
diffusivity appears to diverge as a power law. This allows a topological
interpretation of T_MCT: it marks the transition from a dynamics between basins
of saddles (T>T_MCT) to a dynamics between basins of minima (T<T_MCT).Comment: 4 pages, 3 figures, to be published on PR
- …
