16 research outputs found

    ß-arrestin 2 germline knockout does not attenuate opioid respiratory depression

    No full text
    Opioids are perhaps the most effective analgesics in medicine. However, between 1999 and 2018, over 400,000 people in the United States died from opioid overdose. Excessive opioids make breathing lethally slow and shallow, a side-effect called opioid-induced respiratory depression. This doubled-edged sword has sparked the desire to develop novel therapeutics that provide opioid-like analgesia without depressing breathing. One such approach has been the design of so-called ‘biased agonists’ that signal through some, but not all pathways downstream of the ”-opioid receptor (MOR), the target of morphine and other opioid analgesics. This rationale stems from a study suggesting that MOR-induced ß-arrestin 2 dependent signaling is responsible for opioid respiratory depression, whereas adenylyl cyclase inhibition produces analgesia. To verify this important result that motivated the ‘biased agonist’ approach, we re-examined breathing in ß-arrestin 2-deficient mice and instead find no connection between ß-arrestin 2 and opioid respiratory depression. This result suggests that any attenuated effect of ‘biased agonists’ on breathing is through an as-yet defined mechanism

    A novel reticular node in the brainstem synchronizes neonatal mouse crying with breathing

    No full text
    International audienceHuman speech can be divided into short, rhythmically timed elements, similar to syllables within words. Even our cries and laughs, as well as the vocalizations of other species, are periodic. However, the cellular and molecular mechanisms underlying the tempo of mammalian vocalizations remain unknown. Furthermore, even the core cells that produce vocalizations remain ill-defined. Here, we describe rhythmically timed neonatal mouse vocalizations that occur within single breaths and identify a brainstem node that is necessary for and sufficient to structure these cries, which we name the intermediate reticular oscillator (iRO). We show that the iRO acts autonomously and sends direct inputs to key muscles and the respiratory rhythm generator in order to coordinate neonatal vocalizations with breathing, as well as paces and patterns these cries. These results reveal that a novel mammalian brainstem oscillator embedded within the conserved breathing circuitry plays a central role in the production of neonatal vocalizations

    Neuronal heterogeneity and stereotyped connectivity in the auditory afferent system

    No full text
    Spiral ganglion neurons (SGNs) of the cochlea receive input from hair cells and project to the auditory brainstem. Here, the authors perform single-cell RNA sequencing to identify four SGN subclasses and characterize their molecular profile, electrophysiological properties and connectivity

    An Efficient Genetic Screen in Drosophila to Identify Nuclear-Encoded Genes With Mitochondrial Function

    No full text
    We conducted a screen for glossy-eye flies that fail to incorporate BrdU in the third larval instar eye disc but exhibit normal neuronal differentiation and isolated 23 complementation groups of mutants. These same phenotypes were previously seen in mutants for cytochrome c oxidase subunit Va. We have molecularly characterized six complementation groups and, surprisingly, each encodes a mitochondrial protein. Therefore, we believe our screen to be an efficient method for identifying genes with mitochondrial function

    G-TRACE: rapid Gal4-based cell lineage analysis in Drosophila

    No full text
    We combine Gal4/UAS, FLP/FRT and fluorescent reporters to generate cell clones that provide spatial, temporal, and genetic information about the origins of individual cells in Drosophila. We name this combination the Gal4 Technique for Real-time and Clonal Expression (G-TRACE). The approach should allow for screening and the identification of real-time and lineage-traced expression patterns on a genomic scale

    The peptidergic control circuit for sighing

    No full text
    Sighs are long, deep breaths expressing sadness, relief, or exhaustion. Sighs also occur spontaneously every few minutes to reinflate alveoli, and sighing increases under hypoxia, stress, and certain psychiatric conditions. Here we use molecular, genetic, and pharmacologic approaches to identify a peptidergic sigh control circuit in murine brain. Small neural subpopulations in a key breathing control center (RTN/pFRG) express bombesin-like neuropeptide genes neuromedin B (Nmb) or gastrin releasing peptide (Grp). These project to the preBötzinger Complex (preBötC), the respiratory rhythm generator, which expresses NMB and GRP receptors in overlapping subsets of ~200 neurons. Introducing either neuropeptide into preBötC, or onto preBötC slices, induced sighing, whereas elimination or inhibition of either receptor reduced basal sighing and inhibition of both abolished it. Ablating receptor-expressing neurons eliminated basal and hypoxia-induced sighing, but left breathing otherwise intact initially. We propose these overlapping peptidergic pathways comprise the core of a sigh control circuit that integrates physiological and perhaps emotional input to transform normal breaths into sighs
    corecore