161 research outputs found

    Open source bioimage informatics for cell biology

    Get PDF
    Significant technical advances in imaging, molecular biology and genomics have fueled a revolution in cell biology, in that the molecular and structural processes of the cell are now visualized and measured routinely. Driving much of this recent development has been the advent of computational tools for the acquisition, visualization, analysis and dissemination of these datasets. These tools collectively make up a new subfield of computational biology called bioimage informatics, which is facilitated by open source approaches. We discuss why open source tools for image informatics in cell biology are needed, some of the key general attributes of what make an open source imaging application successful, and point to opportunities for further operability that should greatly accelerate future cell biology discovery

    Validation of an arterial constitutive model accounting for collagen content and crosslinking

    Get PDF
    During the progression of pulmonary hypertension (PH), proximal pulmonary arteries (PAs) increase in both thickness and stiffness. Collagen, a component of the extracellular matrix, is mainly responsible for these changes via increased collagen fiber amount (or content) and crosslinking. We sought to differentiate the effects of collagen content and cross-linking on mouse PA mechanical changes using a constitutive model with parameters derived from experiments in which collagen content and cross-linking were decoupled during hypoxic pulmonary hypertension (HPH). We employed an eight-chain orthotropic element model to characterize collagen’s mechanical behavior and an isotropic neo-Hookean form to represent elastin. Our results showed a strong correlation between the material parameter related to collagen content and measured collagen content (R2 = 0.82, P < 0.0001) and a moderate correlation between the material parameter related to collagen crosslinking and measured crosslinking (R2 = 0.24, P = 0.06). There was no significant change in either the material parameter related to elastin or the measured elastin content from histology. The model-predicted pressure at which collagen begins to engage was ∼25 mmHg, which is consistent with experimental observations. We conclude that this model may allow us to predict changes in the arterial extracellular matrix from measured mechanical behavior in PH patients, which may provide insight into prognoses and the effects of therapy

    Meeting in the Middle: Towards Successful Multidisciplinary Bioimage Analysis Collaboration

    Get PDF
    With an increase in subject knowledge expertise required to solve specific biological questions, experts from different fields need to collaborate to address increasingly complex issues. To successfully collaborate, everyone involved in the collaboration must take steps to "meet in the middle". We thus present a guide on truly cross-disciplinary work using bioimage analysis as a showcase, where it is required that the expertise of biologists, microscopists, data analysts, clinicians, engineers, and physicists meet. We discuss considerations and best practices from the perspective of both users and technology developers, while offering suggestions for working together productively and how this can be supported by institutes and funders. Although this guide uses bioimage analysis as an example, the guiding principles of these perspectives are widely applicable to other cross-disciplinary work

    Real-time polarization microscopy of fibrillar collagen in histopathology

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Keikhosravi, A., Shribak, M., Conklin, M. W., Liu, Y., Li, B., Loeffler, A., Levenson, R. M., & Eliceiri, K. W. Real-time polarization microscopy of fibrillar collagen in histopathology. Scientific Reports, 11(1), (2021): 19063, https://doi.org/10.1038/s41598-021-98600-w.Over the past two decades, fibrillar collagen reorganization parameters such as the amount of collagen deposition, fiber angle and alignment have been widely explored in numerous studies. These parameters are now widely accepted as stromal biomarkers and linked to disease progression and survival time in several cancer types. Despite all these advances, there has not been a significant effort to make it possible for clinicians to explore these biomarkers without adding steps to the clinical workflow or by requiring high-cost imaging systems. In this paper, we evaluate previously described polychromatic polarization microscope (PPM) to visualize collagen fibers with an optically generated color representation of fiber orientation and alignment when inspecting the sample by a regular microscope with minor modifications. This system does not require stained slides, but is compatible with histological stains such as H&E. Consequently, it can be easily accommodated as part of regular pathology review of tissue slides, while providing clinically useful insight into stromal composition.This work was supported by NIH R01 CA238191 (KWE), NIH P41GM135019 (KWE), NIH R01 GM101701 (MS), funding from the Morgridge Institute for Research (KWE), the Semiconductor Research Corporation (SRC) (KWE), and the William T. Golden Endowment (MS)

    OpenSPIM - an open access platform for light sheet microscopy

    Full text link
    Light sheet microscopy promises to revolutionize developmental biology by enabling live in toto imaging of entire embryos with minimal phototoxicity. We present detailed instructions for building a compact and customizable Selective Plane Illumination Microscopy (SPIM) system. The integrated OpenSPIM hardware and software platform is shared with the scientific community through a public website, thereby making light sheet microscopy accessible for widespread use and optimization to various applications.Comment: 7 pages, 3 figures, 6 supplementary videos, submitted to Nature Methods, associated public website http://openspim.or

    A Three-Dimensional Computational Model of Collagen Network Mechanics

    Get PDF
    Extracellular matrix (ECM) strongly influences cellular behaviors, including cell proliferation, adhesion, and particularly migration. In cancer, the rigidity of the stromal collagen environment is thought to control tumor aggressiveness, and collagen alignment has been linked to tumor cell invasion. While the mechanical properties of collagen at both the single fiber scale and the bulk gel scale are quite well studied, how the fiber network responds to local stress or deformation, both structurally and mechanically, is poorly understood. This intermediate scale knowledge is important to understanding cell- ECM interactions and is the focus of this study. We have developed a three-dimensional elastic collagen fiber network model (bead-and-spring model) and studied fiber network behaviors for various biophysical conditions: collagen density, crosslinker strength, crosslinker density, and fiber orientation (random vs. prealigned). We found the best-fit crosslinker parameter values using shear simulation tests in a small strain region. Using this calibrated collagen model, we simulated both shear and tensile tests in a large linear strain region for different network geometry conditions. The results suggest that network geometry is a key determinant of the mechanical properties of the fiber network. We further demonstrated how the fiber network structure and mechanics evolves with a local formation, mimicking the effect of pulling by a pseudopod during cell migration. Our computational fiber network model is a step toward a full biomechanical model of cellular behaviors in various ECM conditions
    • …
    corecore