8 research outputs found

    Therapeutic potential of autologous and syngeneic olfactory ecto-mesenchymal stem cells (OE-MSCs) tranplantations in two models of central nervous system (SNC) injuries

    No full text
    L’objectif de mon travail de thèse était d’évaluer si des autogreffes de cellules souches olfactives ecto-mésenchymateuses (CSO-EMs) restauraient les capacités d’apprentissage et de mémorisation dans un modèle d’amnésie chez le rat, consécutive à une ischémie cérébrale globale (ICG). Cette dernière pouvant avoir lieu suite à un arrêt cardiaque (AC) et conduire à des conséquences neurologiques délétères telles que des atteintes cognitives et/ou sensorimotrices.C’est dans ce contexte scientifique que se sont inscrits mes travaux de recherche dont le premier objectif était de valider un modèle fiable et reproductible d’amnésie chez le rat. Nous avons sélectionné un modèle d’AC induisant une ICG caractérisé par des pertes neuronales ciblées au niveau de la zone CA1 des hippocampes dorsaux associées à des déficits d’apprentissage et de mémorisation.Enfin, la dernière étape de mon projet a consisté à évaluer l'effet des autogreffes de CSO-EMs sur la restauration des fonctions cognitives chez des rats ayant subi une ICG. Tout d’abord, j’ai dû élaborer un protocole permettant le suivi du devenir des CSO-EMs à la suite d’autogreffes, sans en altérer leurs propriétés endogènes. Puis j’ai démontré que ces autogreffes de CSO-EMs GFP+ : i) restauraient les capacités d’apprentissage et de mémorisation, ii) stimulaient la neurogénèse et iii) amélioraient la PLT chez des rats ayant subis une ICG.L’ensemble des données recueillies au cours de ma thèse accordent d’avantage de crédibilité à l’utilisation des CSO-EMs dans le cadre de thérapies menées contre les atteintes du SNC.The main goal of my thesis was to evaluate whether autografts of ecto-mesenchymal olfactory stem cell (EM-OSCs) restored learning and memory abilities in a rats model of amnesia following global cerebral ischemia (GCI). The latter can occur following cardiac arrest (CA) and lead to deleterious neurological consequences such as cognitive and / or sensorimotor injuries.Finally, the final step in my project was to evaluate the effect of EM-OSCs autografts on restoration of cognitive functions in ischemic rats. First of all, I had to develop a protocol to monitor the fate of EM-OSCs following autografts, without altering their endogenous properties. Then, I demonstrated that these GFP+ EM-OSCs autografts: i) restored learning and memory abilities, ii) stimulated neurogenesis, and iii) improved PLT in ischemic rats. All the data gathered during my thesis give credibility to the use of EM-OSCs in the framework of therapies against the CNS damages

    Emotion Evaluation of Four Generations of Woman from a 104-Year Old Ancestress

    No full text
    International audienc

    Grafts of olfactory stem cells restore breathing and motor functions after a rat spinal cord injury

    No full text
    International audienceThe transplantation of Olfactory Ecto-Mesenchymal Stem Cells (OEMSCs) could be a helpful therapeutic strategy for spinal cord repair. Using an acute rat model of high cervical contusion that provokes a persistent hemi-diaphragmatic and foreleg paralysis, we evaluated the therapeutic effect of a delayed syngeneic transplantation (two days post-contusion) of OEMSCs within the injured spinal cord. Respiratory function was assessed using diaphragmatic electromyography and neuro-electrophysiological recordings of phrenic nerves (innervating the diaphragm). Locomotor function was evaluated using the ladder-walking locomotor test. Cellular reorganization in the injured area was also studied using immunohistochemical and microscopic techniques. We report a substantial improvement in breathing movements, in activities of the ipsilateral phrenic nerve and ipsilateral diaphragm and also in locomotor abilities four months post-transplantation with nasal OEMSCs. Moreover, in the grafted spinal cord, lesioned areas and inflammation were reduced. Some grafted stem cells adopted a neuronal phenotype and axogenesis was observed in the injury site. The therapeutic effect on the supraspinal command is presumably due to both neuronal replacements and beneficial paracrine effects on the injury area. Our study provides evidence that nasal OEMSCs could be a first step in clinical application, particularly in patients with reduced breathing/locomotor movements

    Global cerebral ischemia in rats leads to amnesia due to selective neuronal death followed by astroglial scar formation in the CA1 layer

    No full text
    International audienceGlobal Cerebral Ischemia (GCI) occurs following cardiac arrest or neonatal asphyxia and leads to harmful neurological consequences. In most cases, patients who survive cardiac arrest develop severe cognitive and motor impairments. This study focused on learning and memory deficits associated with brain neuroanatomical reorganization that appears after GCI. The four-vessel occlusion (4VO) model was performed to produce a transient GCI. Hippocampal lesions in ischemic rats were visualized using anatomical Magnetic Resonance Imaging (aMRI). Then, the learning and memory abilities of control and ischemic (bilaterally or unilaterally) rats were assessed through the olfactory associated learning task. Finally, a "longitudinal" histological study was carried out to highlight the cellular reorganizations occurring after GCI. We demonstrated that the imaging, behavioral and histological results are closely related. In fact, aMRI revealed the appearance of hyper-intense signals in the dorsal hippocampus at day 3 post-GCI. Consequently, we showed a rise in cell proliferation (Ki 67+cells) and endogenous neurogenesis especially in the dentate gyrus (DG) at day 3 post-GCI. Then, hyper-intense signals in the dorsal hippocampus were confirmed by strong neuronal losses in the CA1 layer at day 7 post-GCI. These results were linked with severe learning and memory impairments only in bilaterally ischemic rats at day 14 post-GCI. This amnesia was accompanied by huge astroglial and microglial hyperactivity at day 30 post-GCI. Finally, Nestin+cells and astrocytes gave rise to astroglial scars, which persisted 60days post-GCI. In the light of these results, the 4VO model appears a reliable method to produce amnesia in order to study and develop new therapeutic strategies

    Isolation and characterization of olfactory ecto-mesenchymal stem cells from eight mammalian genera

    No full text
    International audienceBackground: Stem cell-based therapies are an attractive option to promote regeneration and repair defective tissues and organs. Thanks to their multipotency, high proliferation rate and the lack of major ethical limitations, "olfactory ecto-mesenchymal stem cells" (OE-MSCs) have been described as a promising candidate to treat a variety of damaged tissues. Easily accessible in the nasal cavity of most mammals, these cells are highly suitable for autologous cell-based therapies and do not face issues associated with other stem cells. However, their clinical use in humans and animals is limited due to a lack of preclinical studies on autologous transplantation and because no well-established methods currently exist to cultivate these cells. Here we evaluated the feasibility of collecting, purifying and amplifying OE-MSCs from different mammalian genera with the goal of promoting their interest in veterinary regenerative medicine. Biopsies of olfactory mucosa from eight mammalian genera (mouse, rat, rabbit, sheep, dog, horse, gray mouse lemur and macaque) were collected, using techniques derived from those previously used in humans and rats. The possibility of amplifying these cells and their stemness features and differentiation capability were then evaluated. Results: Biopsies were successfully performed on olfactory mucosa without requiring the sacrifice of the donor animal, except mice. Cell populations were rapidly generated from olfactory mucosa explants. These cells displayed similar key features of their human counterparts: a fibroblastic morphology, a robust expression of nestin, an ability to form spheres and similar expression of surface markers (CD44, CD73). Moreover, most of them also exhibited high proliferation rates and clonogenicity with genus-specific properties. Finally, OE-MSCs also showed the ability to differentiate into mesodermal lineages. Conclusions: This article describes for the first time how millions of OE-MSCs can be quickly and easily obtained from different mammalian genera through protocols that are well-suited for autologous transplantations. Moreover, their multipotency makes them relevant to evaluate therapeutic application in a wide variety of tissue injury models. This study paves the way for the development of new fundamental and clinical studies based on OE-MSCs transplantation and suggests their interest in veterinary medicine
    corecore