363 research outputs found

    Prevalence, Treatment, and Outcomes of Coexistent Pulmonary Hypertension and Interstitial Lung Disease in Systemic Sclerosis

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/150609/1/art40862.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/150609/2/art40862_am.pd

    Von Willebrand factor delays liver repair after acetaminophen-induced acute liver injury in mice

    Get PDF
    Background &amp; Aim: Acetaminophen (APAP)-induced acute liver failure is associated with substantial alterations in the hemostatic system. In mice, platelets accumulate in the liver after APAP overdose and appear to promote liver injury. Interestingly, patients with acute liver injury have highly elevated levels of the platelet-adhesive protein von Willebrand factor (VWF), but a mechanistic connection between VWF and progression of liver injury has not been established. We tested the hypothesis that VWF contributes directly to experimental APAP-induced acute liver injury. Methods: Wild-type mice and VWF-deficient (Vwf−/−) mice were given a hepatotoxic dose of APAP (300 mg/kg, i.p.) or vehicle (saline). VWF plasma levels were measured by ELISA, and liver necrosis or hepatocyte proliferation was measured by immunohistochemistry. Platelet and VWF deposition were measured by immunofluorescence. Results: In wild-type mice, VWF plasma levels, high molecular weight (HMW) VWF multimers, and VWF activity decreased 24 h after APAP challenge. These changes coupled to robust hepatic VWF and platelet deposition, although VWF deficiency had minimal effect on peak hepatic platelet accumulation or liver injury. VWF plasma levels were elevated 48 h after APAP challenge, but with relative reductions in HMW multimers and VWF activity. Whereas hepatic platelet aggregates persisted in livers of APAP-challenged wild-type mice, platelets were nearly absent in Vwf−/− mice 48 h after APAP challenge. The absence of platelet aggregates was linked to dramatically accelerated repair of the injured liver. Complementing observations in Vwf−/− mice, blocking VWF or the platelet integrin αIIbβ3 during development of injury significantly reduced hepatic platelet aggregation and accelerated liver repair in APAP-challenged wild-type mice. Conclusion: These studies are the first to suggest a mechanistic link between VWF, hepatic platelet accumulation, and liver repair. Targeting VWF might provide a novel therapeutic approach to improve repair of the APAP-injured liver. Lay summary: Patients with acute liver injury due to acetaminophen overdose have highly elevated levels of the platelet-adhesive protein von Willebrand factor. It is not known whether von Willebrand factor plays a direct role in the progression of acute liver injury. We discovered that von Willebrand factor delays repair of the acetaminophen-injured liver in mice and that targeting von Willebrand factor, even in mice with established liver injury, accelerates liver repair.</p

    Tropomodulin’s Actin-Binding Abilities Are Required to Modulate Dendrite Development

    Get PDF
    There are many unanswered questions about the roles of the actin pointed end capping and actin nucleation by tropomodulins (Tmod) in regulating neural morphology. Previous studies indicate that Tmod1 and Tmod2 regulate morphology of the dendritic arbor and spines. Tmod3, which is expressed in the brain, had only a minor influence on morphology. Although these studies established a defined role of Tmod in regulating dendritic and synaptic morphology, the mechanisms by which Tmods exert these effects are unknown. Here, we overexpressed a series of mutated forms of Tmod1 and Tmod2 with disrupted actin-binding sites in hippocampal neurons and found that Tmod1 and Tmod2 require both of their actin-binding sites to regulate dendritic morphology and dendritic spine shape. Proximity ligation assays (PLAs) indicate that these mutations impact the interaction of Tmod1 and Tmod2 with tropomyosins Tpm3.1 and Tpm3.2. This impact on Tmod/Tpm interaction may contribute to the morphological changes observed. Finally, we use molecular dynamics simulations (MDS) to characterize the structural changes, caused by mutations in the C-terminal helix of the leucine-rich repeat (LRR) domain of Tmod1 and Tmod2 alone and when bound onto actin monomers. Our results expand our understanding of how neurons utilize the different Tmod isoforms in development

    Divergent adaptive and innate immunological responses are observed in humans following blunt trauma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The immune response to trauma has traditionally been modeled to consist of the systemic inflammatory response syndrome (SIRS) followed by the compensatory anti-inflammatory response syndrome (CARS). We investigated these responses in a homogenous cohort of male, severe blunt trauma patients admitted to a University Hospital surgical intensive care unit (SICU). After obtaining consent, peripheral blood was drawn up to 96 hours following injury. The enumeration and functionality of both myeloid and lymphocyte cell populations were determined.</p> <p>Results</p> <p>Neutrophil numbers were observed to be elevated in trauma patients as compared to healthy controls. Further, neutrophils isolated from trauma patients had increased raft formation and phospho-Akt. Consistent with this, the neutrophils had increased oxidative burst compared to healthy controls. In direct contrast, blood from trauma patients contained decreased naïve T cell numbers. Upon activation with a T cell specific mitogen, trauma patient T cells produced less IFN-gamma as compared to those from healthy controls. Consistent with these results, upon activation, trauma patient T cells were observed to have decreased T cell receptor mediated signaling.</p> <p>Conclusions</p> <p>These results suggest that following trauma, there are concurrent and divergent immunological responses. These consist of a hyper-inflammatory response by the innate arm of the immune system concurrent with a hypo-inflammatory response by the adaptive arm.</p

    A Novel Curriculum for Medical Student Training in LGBTQ Healthcare: A Regional Pathway Experience.

    Get PDF
    Background: Lesbian, gay, bisexual, transgender, and queer (LGBTQ) individuals face considerable health disparities, often due to a lack of LGBTQ-competent care. Such disparities and lack of access to informed care are even more staggering in rural settings. As the state medical school for the Washington, Wyoming, Alaska, Montana, and Idaho (WWAMI) region, the University of Washington School of Medicine (UWSOM) is in a unique position to train future physicians to provide healthcare that meets the needs of LGBTQ patients both regionally and nationally. Objective: To describe our methodology of developing a student-driven longitudinal, region-wide curriculum to train medical students to provide high-quality care to LGBTQ patients. Methods: A 4-year LGBTQ Health Pathway was developed and implemented as a student-led initiative at the UWSOM. First- and second-year medical students at sites across the WWAMI region are eligible to apply. Accepted Pathway students complete a diverse set of pre-clinical and clinical components: online modules, didactic courses, longitudinal community service/advocacy work, a scholarly project, and a novel clinical clerkship in LGBTQ health developed specifically for this Pathway experience. Students who complete all requirements receive a certification of Pathway completion. This is incorporated into the Medical Student Performance Evaluation as part of residency applications. Results: The LGBTQ Health Pathway is currently in its fourth year. A total of 43 total students have enrolled, of whom 37.3% are based in the WWAMI region outside of Seattle. Pathway students have completed a variety of scholarly projects on LGBTQ topics, and over 1000 hours of community service/advocacy. The first cohort of 8 students graduated with a certificate of Pathway completion in spring 2020. Conclusions: The LGBTQ Health Pathway at UWSOM is a novel education program for motivated medical students across the 5-state WWAMI region. The diverse milestones, longitudinal nature of the program, focus on rural communities, and opportunities for student leadership are all strengths and unique aspects of this program. The Pathway curriculum and methodology described here serve as a model for student involvement and leadership in medical education. This program enables medical students to enhance their training in the care of LGBTQ patients and provides a unique educational opportunity for future physicians who strive to better serve LGBTQ populations

    The U.S. Inland Creel and Angler Survey Catalog (CreelCat): Development, Applications, and Opportunities

    Get PDF
    Inland recreational fishing, defined as primarily leisure-driven fishing in freshwaters, is a popular pastime in the USA. State natural resource agencies endeavor to provide high-quality and sustainable fishing opportunities for anglers. Managers often use creel and other angler survey data to inform state- and waterbody-level management efforts. Despite the broad implementation of angler surveys and their importance to fisheries management at state scales, regional and national coordination among these activities is minimal, limiting data applicability for larger-scale management practices and research. Here, we introduce the U.S. Inland Creel and Angler Survey Catalog (CreelCat), a first-of-its-kind, publicly available national database of angler survey data that establishes a baseline of national inland recreational fishing metrics. We highlight research and management applications to help support sustainable inland recreational fishing practices, consider cautions, and make recommendations for implementation
    • …
    corecore