46 research outputs found

    PEG infiltration: an alternative method to obtain thin sections of cacti tissues

    Get PDF
    Abstract Exploring the anatomical variability along the stem of cacti requires obtaining high-quality thin sections from hard and soft tissues. Several embedding, infiltration, and sectioning methods have been applied mainly to investigate the harder stem base of cacti, where thin cross-sections are relatively easy to obtain. However, analyzing the variation of anatomical features along cacti stems remains a challenge. Specifically, at the tip of cacti stems, the soft and water-rich dominant tissues are difficult to infiltrate. Here we show results obtained by adapting polyethylene glycol (PEG) infiltration techniques and present a step-by-step description of a fast and hazardous chemical-free method that allows successful cross-sectioning. This infiltration technique may provide a tool to further explore and quantify xylem anatomical trait variation along stems of a wide range of succulent-stemmed taxa

    Conservation physiology and the quest for a ‘good’ Anthropocene

    Get PDF
    It has been proposed that we are now living in a new geological epoch known as the Anthropocene, which is specifically defined by the impacts that humans are having on the Earth’s biological diversity and geology. Although the proposal of this term was borne out of an acknowledgement of the negative changes we are imparting on the globe (e.g. climate change, pollution, coastal erosion, species extinctions), there has recently been action amongst a variety of disciplines aimed at achieving a ‘good Anthropocene’ that strives to balance societal needs and the preservation of the natural world. Here, we outline ways that the discipline of conservation physiology can help to delineate a hopeful, progressive and productive path for conservation in the Anthropocene and, specifically, achieve that vision. We focus on four primary ways that conservation physiology can contribute, as follows: (i) building a proactive approach to conservation; (ii) encouraging a pragmatic perspective; (iii) establishing an appreciation for environmental resilience; and (iv) informing and engaging the public and political arenas. As a collection of passionate individuals combining theory, technological advances, public engagement and a dedication to achieving conservation success, conservation physiologists are poised to make meaningful contributions to the productive, motivational and positive way forward that is necessary to curb and reverse negative human impact on the environment

    The conservation physiology toolbox: Status and opportunities

    Get PDF
    For over a century, physiological tools and techniques have been allowing researchers to characterize how organisms respond to changes in their natural environment and how they interact with human activities or infrastructure. Over time, many of these techniques have become part of the conservation physiology toolbox, which is used to monitor, predict, conserve, and restore plant and animal populations under threat. Here, we provide a summary of the tools that currently comprise the conservation physiology toolbox. By assessing patterns in articles that have been published in 'Conservation Physiology' over the past 5 years that focus on introducing, refining and validating tools, we provide an overview of where researchers are placing emphasis in terms of taxa and physiological sub-disciplines. Although there is certainly diversity across the toolbox, metrics of stress physiology (particularly glucocorticoids) and studies focusing on mammals have garnered the greatest attention, with both comprising the majority of publications ( > 45%). We also summarize the types of validations that ar

    Conservation physiology and the quest for a ‘good’ Anthropocene

    Get PDF
    It has been proposed that we are now living in a new geological epoch known as the Anthropocene, which is specifically defined by the impacts that humans are having on the Earth’s biological diversity and geology. Although the proposal of this term was borne out of an acknowledgement of the negative changes we are imparting on the globe (e.g. climate change, pollution, coastal erosion, species extinctions), there has recently been action amongst a variety of disciplines aimed at achieving a ‘good Anthropocene’ that strives to balance societal needs and the preservation of the natural world. Here, we outline ways that the discipline of conservation physiology can help to delineate a hopeful, progressive and productive path for conservation in the Anthropocene and, specifically, achieve that vision. We focus on four primary ways that conservation physiology can contribute, as follows: (i) building a proactive approach to conservation; (ii) encouraging a pragmatic perspective; (iii) establishing an appreciation for environmental resilience; and (iv) informing and engaging the public and political arenas. As a collection of passionate individuals combining theory, technological advances, public engagement and a dedication to achieving conservation success, conservation physiologists are poised to make meaningful contributions to the productive, motivational and positive way forward that is necessary to curb and reverse negative human impact on the environment

    Elevating the impact of conservation physiology by building a community devoted to excellence, transparency, ethics, integrity and mutual respect

    Get PDF
    [Extract] Ten years ago, the journal Conservation Physiology was launched jointly by the Society for Experimental Biology and Oxford University Press. Much has been accomplished since 2012 including publishing over 600 papers in the journal and helping to build a sense of place for aspiring and practicing conservation physiologists (Cooke et al., 2020). Yet, more work is needed to further elevate the impact of conservation physiology as a discipline and community. Here, we summarize what is needed to build and strengthen a community devoted to not only excellence, transparency, ethics, integrity and mutual respect, but also courage to tackle some of the overarching challenges humanity faces. As active voices in the conservation physiology community we hope that this paper will help shape the future of our discipline while also guiding the activities and priorities of the journal and editorial team. Since the term ‘conservation physiology’ was coined by Wikelski and Cooke (2006) it has emerged as an essential component of conservation science and practice. Conservation physiology is about the use of physiological tools, knowledge and concepts to understand and solve conservation problems across diverse taxa (Cooke et al., 2013). It is regarded as being particularly effective at understanding mechanisms, generating cause–effect relationships (e.g. threat X does Y to organism Z), creating predictive tools and testing conservation interventions (Cooke and O’Connor, 2010). Issues relevant to conservation physiology range from very local, focused on recovery of an imperilled population (Birnie-Gauvin et al., 2017), to global-scale issues such as tackling the UN Sustainable Development Goals (Cooke et al., 2020) and the climate crisis (Madliger et al., 2021c). The discipline is now supported by a conceptual framework (Coristine et al., 2014), a journal (https://academic.oup.com/conphys) and a reference book (Madliger et al. 2021a). There is also a growing community of researchers who engage in conservation physiology and even define themselves as conservation physiologists (Madliger et al., 2021b). Moreover, in conservation physiology there are success stories that demonstrate the potential of conservation physiology (Madliger et al., 2016)

    Success stories and emerging themes in conservation physiology

    Get PDF
    The potential benefits of physiology for conservation are well established and include greater specificity of management techniques, determination of cause–effect relationships, increased sensitivity of health and disturbance monitoring and greater capacity for predicting future change. While descriptions of the specific avenues in which conservation and physiology can be integrated are readily available and important to the continuing expansion of the discipline of ‘conservation physiology’, to date there has been no assessment of how the field has specifically contributed to conservation success. However, the goal of conservation physiology is to foster conservation solutions and it is therefore important to assess whether physiological approaches contribute to downstream conservation outcomes and management decisions. Here, we present eight areas of conservation concern, ranging from chemical contamination to invasive species to ecotourism, where physiological approaches have led to beneficial changes in human behaviour, management or policy. We also discuss the shared characteristics of these successes, identifying emerging themes in the discipline. Specifically, we conclude that conservation physiology: (i) goes beyond documenting change to provide solutions; (ii) offers a diversity of physiological metrics beyond glucocorticoids (stress hormones); (iii) includes approaches that are transferable among species, locations and times; (iv) simultaneously allows for human use and benefits to wildlife; and (v) is characterized by successes that can be difficult to find in the primary literature. Overall, we submit that the field of conservation physiology has a strong foundation of achievements characterized by a diversity of conservation issues, taxa, physiological traits, ecosystem types and spatial scales. We hope that these concrete successes will encourage the continued evolution and use of physiological tools within conservation-based research and management plans."This work was supported by the Society for Integrative and Comparative Biology; the University of Windsor, Ontario, Canada; Dalhousie University, Nova Scotia, Canada; and the Canadian Society of Zoologists. C.L.M. was supported by a Natural Sciences and Engineering Research Council of Canada PGS-D (427552). S.J.C. and O.P.L. are supported by the Canada Research Chairs program. E.J.C. was supported by a grant from the National Science Foundation (BCS-1134687). K.R.H. was supported by grants from the National Science Foundation’s MacroSystems Biology program (award no. 1340856) and the US Department of Agriculture (NRI 2015-67013-23138). J.R.R. was supported by grants from the National Science Foundation (EF-1241889), National Institutes of Health (R01GM109499, R01TW010286), US Department of Agriculture (NRI 2006-01370, 2009-35102-0543) and US Environmental Protection Agency (CAREER 83518801)."https://academic.oup.com/conphys/article/4/1/cov057/295129

    Using phenocams to monitor our changing earth: Toward a global phenocam network

    Get PDF
    Rapid changes to the biosphere are altering ecological processes worldwide. Developing informed policies for mitigating the impacts of environmental change requires an exponential increase in the quantity, diversity, and resolution of field-collected data, which, in turn, necessitates greater reliance on innovative technologies to monitor ecological processes across local to global scales. Automated digital time-lapse cameras – “phenocams” – can monitor vegetation status and environmental changes over long periods of time. Phenocams are ideal for documenting changes in phenology, snow cover, fire frequency, and other disturbance events. However, effective monitoring of global environmental change with phenocams requires adoption of data standards. New continental-scale ecological research networks, such as the US National Ecological Observatory Network (NEON) and the European Union's Integrated Carbon Observation System (ICOS), can serve as templates for developing rigorous data standards and extending the utility of phenocam data through standardized ground-truthing. Open-source tools for analysis, visualization, and collaboration will make phenocam data more widely usable

    Conservation physiology and the COVID-19 pandemic

    Get PDF
    The COVID-19 pandemic and associated public health measures have had unanticipated effects on ecosystems and biodiversity. Conservation physiology and its mechanistic underpinnings are well positioned to generate robust data to inform the extent to which the Anthropause has benefited biodiversity through alterations in disturbance-, pollution- and climate change-related emissions. The conservation physiology toolbox includes sensitive biomarkers and tools that can be used both retroactively (e.g. to reconstruct stress in wildlife before, during and after lockdown measures) and proactively (e.g. future viral waves) to understand the physiological consequences of the pandemic. The pandemic has also created new risks to ecosystems and biodiversity through extensive use of various antimicrobial products (e.g. hand cleansers, sprays) and plastic medical waste. Conservation physiology can be used to identify regulatory thresholds for those products. Moreover, given that COVID-19 is zoonotic, there is also opportunity for conservation physiologists to work closely with experts in conservation medicine and human health on strategies that will reduce the likelihood of future pandemics (e.g. what conditions enable disease development and pathogen transfer) while embracing the One Health concept. The conservation physiology community has also been impacted directly by COVID-19 with interruptions in research, training and networking (e.g. conferences). Because this is a nascent discipline, it will be particularly important to support early career researchers and ensure that there are recruitment pathways for the next generation of conservation physiologists while creating a diverse and inclusive community. We remain hopeful for the future and in particular the ability of the conservation physiology community to deliver relevant, solutions-oriented science to guide decision makers particularly during the important post-COVID transition and economic recovery

    Success stories and emerging themes in conservation physiology

    Get PDF
    The potential benefits of physiology for conservation are well established and include greater specificity of management techniques, determination of cause-effect relationships, increased sensitivity of health and disturbance monitoring and greater capacity for predicting future change. While descriptions of the specific avenues in which conservation and physiology can be integrated are readily available and important to the continuing expansion of the discipline of \u27conservation physiology\u27, to date there has been no assessment of how the field has specifically contributed to conservation success. However, the goal of conservation physiology is to foster conservation solutions and it is therefore important to assess whether physiological approaches contribute to downstream conservation outcomes and management decisions. Here, we present eight areas of conservation concern, ranging from chemical contamination to invasive species to ecotourism, where physiological approaches have led to beneficial changes in human behaviour, management or policy. We also discuss the shared characteristics of these successes, identifying emerging themes in the discipline. Specifically, we conclude that conservation physiology: (i) goes beyond documenting change to provide solutions; (ii) offers a diversity of physiological metrics beyond glucocorticoids (stress hormones); (iii) includes approaches that are transferable among species, locations and times; (iv) simultaneously allows for human use and benefits to wildlife; and (v) is characterized by successes that can be difficult to find in the primary literature. Overall, we submit that the field of conservation physiology has a strong foundation of achievements characterized by a diversity of conservation issues, taxa, physiological traits, ecosystem types and spatial scales. We hope that these concrete successes will encourage the continued evolution and use of physiological tools within conservation-based research and management plans

    The second warning to humanity: contributions and solutions from conservation physiology

    Get PDF
    In 1992, the Union of Concerned Scientists shared their ‘World Scientists’ Warning to Humanity’ with governmental leaders worldwide, calling for immediate action to halt the environmental degradation that threatens the systems that support life on Earth. A follow-up ‘Second Warning’ was released in 2017, with over 15 000 scientists as signatories, describing the lack of progress in adopting the sustainable practices necessary to safeguard the biosphere. In their ‘Second Warning’, Ripple and colleagues provided 13 ‘diverse and effective steps humanity can take to transition to sustainability.’ Here, we discuss how the field of conservation physiology can contribute to six of these goals: (i) prioritizing connected, well-managed reserves; (ii) halting the conversion of native habitats to maintain ecosystem services; (iii) restoring native plant communities; (iv) rewilding regions with native species; (v) developing policy instruments; and (vi) increasing outdoor education, societal engagement and reverence for nature. Throughout, we focus our recommendations on specific aspects of physiological function while acknowledging that the exact traits that will be useful in each context are often still being determined and refined. However, for each goal, we include a short case study to illustrate a specific physiological trait or group of traits that is already being utilized in that context. We conclude with suggestions for how conservation physiologists can broaden the impact of their science aimed at accomplishing the goals of the ‘Second Warning’. Overall, we provide an overview of how conservation physiology can contribute to addressing the grand socio-environmental challenges of our time
    corecore