811 research outputs found

    Evaluating motion processing algorithms for use with functional near-infrared spectroscopy data from young children

    Get PDF
    Motion artifacts are often a significant component of the measured signal in functional near-infrared spectroscopy (fNIRS) experiments. A variety of methods have been proposed to address this issue, including principal components analysis (PCA), correlation-based signal improvement (CBSI), wavelet filtering, and spline interpolation. The efficacy of these techniques has been compared using simulated data; however, our understanding of how these techniques fare when dealing with task-based cognitive data is limited. Brigadoi et al. compared motion correction techniques in a sample of adult data measured during a simple cognitive task. Wavelet filtering showed the most promise as an optimal technique for motion correction. Given that fNIRS is often used with infants and young children, it is critical to evaluate the effectiveness of motion correction techniques directly with data from these age groups. This study addresses that problem by evaluating motion correction algorithms implemented in HomER2. The efficacy of each technique was compared quantitatively using objective metrics related to the physiological properties of the hemodynamic response. Results showed that targeted PCA (tPCA), spline, and CBSI retained a higher number of trials. These techniques also performed well in direct head-to-head comparisons with the other approaches using quantitative metrics. The CBSI method corrected many of the artifacts present in our data; however, this approach produced sometimes unstable HRFs. The targeted PCA and spline methods proved to be the most robust, performing well across all comparison metrics. When compared head to head, tPCA consistently outperformed spline. We conclude, therefore, that tPCA is an effective technique for correcting motion artifacts in fNIRS data from young children

    Molecular characterization of Trichomonas gallinae isolates recovered from the Canadian Maritime provinces’ wild avifauna reveals the presence of the genotype responsible for the European finch trichomonosis epidemic and additional strains

    Get PDF
    Finch trichomonosis, caused by Trichomonas gallinae, emerged in the Canadian Maritime provinces in 2007 and has since caused ongoing mortality in regional purple finch (Carpodacus purpureus) and American goldfinch (Carduelis tristis) populations. Trichomonas gallinae was isolated from (1) finches and rock pigeons (Columbia livia) submitted for post-mortem or live-captured at bird feeding sites experiencing trichomonosis mortality; (2) bird seed at these same sites; and (3) rock pigeons live-captured at known roosts or humanely killed. Isolates were characterized using internal transcribed spacer (ITS) region and iron hydrogenase (Fe-hyd) gene sequences. Two distinct ITS types were found. Type A was identical to the UK finch epidemic strain and was isolated from finches and a rock pigeon with trichomonosis; apparently healthy rock pigeons and finches; and bird seed at an outbreak site. Type B was obtained from apparently healthy rock pigeons. Fe-hyd sequencing revealed six distinct subtypes. The predominant subtype in both finches and the rock pigeon with trichomonosis was identical to the UK finch epidemic strain A1. Single nucleotide polymorphisms in Fe-hyd sequences suggest there is fine-scale variation amongst isolates and that finch trichomonosis emergence in this region may not have been caused by a single spill-over event

    A Differentially Private Weighted Empirical Risk Minimization Procedure and its Application to Outcome Weighted Learning

    Full text link
    It is commonplace to use data containing personal information to build predictive models in the framework of empirical risk minimization (ERM). While these models can be highly accurate in prediction, results obtained from these models with the use of sensitive data may be susceptible to privacy attacks. Differential privacy (DP) is an appealing framework for addressing such data privacy issues by providing mathematically provable bounds on the privacy loss incurred when releasing information from sensitive data. Previous work has primarily concentrated on applying DP to unweighted ERM. We consider an important generalization to weighted ERM (wERM). In wERM, each individual's contribution to the objective function can be assigned varying weights. In this context, we propose the first differentially private wERM algorithm, backed by a rigorous theoretical proof of its DP guarantees under mild regularity conditions. Extending the existing DP-ERM procedures to wERM paves a path to deriving privacy-preserving learning methods for individualized treatment rules, including the popular outcome weighted learning (OWL). We evaluate the performance of the DP-wERM application to OWL in a simulation study and in a real clinical trial of melatonin for sleep health. All empirical results demonstrate the viability of training OWL models via wERM with DP guarantees while maintaining sufficiently useful model performance. Therefore, we recommend practitioners consider implementing the proposed privacy-preserving OWL procedure in real-world scenarios involving sensitive data.Comment: 24 pages and 2 figures for the main manuscript, 5 pages and 2 figures for the supplementary material
    corecore