108 research outputs found
Nicotinic α7 acetylcholine receptor-mediated currents are not modulated by the tryptophan metabolite kynurenic acid in adult hippocampal interneurons
The  tryptophan  metabolite,  kynurenic  acid (KYNA),  is  classically  known  to  be  an antagonist  of ionotropic glutamate receptors. Within the last decade several reports have been published suggesting that KYNA also blocks nicotinic acetylcholine receptors (nAChRs) containing the α7 subunit (α7*). Most of these reports involve either indirect measurements of KYNA effects on α7 nAChR function, or are reports of KYNA effects in complicated in vivo systems.  However, a recent report investigating KYNA interactions with α7 nAChRs failed to detect an interaction using direct measurements of α7 nAChRs function.  Further, it showed that a KYNA blockade of α7 nAChR stimulated GABA release (an indirect measure of α7 nAChR function) was not due to KYNA blockade of the α7 nAChRs. The current study measured the direct effects of KYNA on α7-containing nAChRs expressed on interneurons in the hilar and CA1 stratum radiatum regions of the mouse hippocampus and on interneurons in the CA1 region of the rat hippocampus.  Here we show that KYNA does not block α7* nACHRs using direct patch-­clamp recording of α7 currents in adult brain slices
Can in vitro studies aid in the development and use of antiseizure therapies? A report of the ILAE/AES Joint Translational Task Force
In vitro preparations (defined here as cultured cells, brain slices, and isolated whole brains) offer a variety of approaches to modeling various aspects of seizures and epilepsy. Such models are particularly amenable to the application of anti-seizure compounds, and consequently are a valuable tool to screen the mechanisms of epileptiform activity, mode of action of known anti-seizure medications (ASMs), and the potential efficacy of putative new anti-seizure compounds. Despite these applications, all disease models are a simplification of reality and are therefore subject to limitations. In this review, we summarize the main types of in vitro models that can be used in epilepsy research, describing key methodologies as well as notable advantages and disadvantages of each. We argue that a well-designed battery of in vitro models can form an effective and potentially high-throughput screening platform to predict the clinical usefulness of ASMs, and that in vitro models are particularly useful for interrogating mechanisms of ASMs. To conclude, we offer several key recommendations that maximize the potential value of in vitro models in ASM screening. This includes the use of multiple in vitro tests that can complement each other, carefully combined with in vivo studies, the use of tissues from chronically epileptic (rather than naĂŻve wild-type) animals, and the integration of human cell/tissue-derived preparations
The Evolutionarily-conserved Polyadenosine RNA Binding Protein, Nab2, Cooperates with Splicing Machinery to Regulate the Fate of pre-mRNA
Numerous RNA binding proteins are deposited onto an mRNA transcript to modulate post-transcriptional processing events ensuring proper mRNA maturation. Defining the interplay between RNA binding proteins that couple mRNA biogenesis events is crucial for understanding how gene expression is regulated. To explore how RNA binding proteins control mRNA processing, we investigated a role for the evolutionarily conserved polyadenosine RNA binding protein, Nab2, in mRNA maturation within the nucleus. This work reveals that nab2 mutant cells accumulate intron-containing pre-mRNA in vivo. We extend this analysis to identify genetic interactions between mutant alleles of nab2 and genes encoding the splicing factor, MUD2, and the RNA exosome, RRP6, with in vivo consequences of altered pre-mRNA splicing and poly(A) tail length control. As further evidence linking Nab2 proteins to splicing, an unbiased proteomic analysis of vertebrate Nab2, ZC3H14, identifies physical interactions with numerous components of the spliceosome. We validated the interaction between ZC3H14 and U2AF2/U2AF^(65). Taking all the findings into consideration, we present a model where Nab2/ZC3H14 interacts with spliceosome components to allow proper coupling of splicing with subsequent mRNA processing steps contributing to a kinetic proofreading step that allows properly processed mRNA to exit the nucleus and escape Rrp6-dependent degradation
Recommended from our members
Epilepsy Benchmarks Area III: Improved Treatment Options for Controlling Seizures and Epilepsy-Related Conditions Without Side Effects.
The goals of Epilepsy Benchmark Area III involve identifying areas that are ripe for progress in terms of controlling seizures and patient symptoms in light of the most recent advances in both basic and clinical research. These goals were developed with an emphasis on potential new therapeutic strategies that will reduce seizure burden and improve quality of life for patients with epilepsy. In particular, we continue to support the proposition that a better understanding of how seizures are initiated, propagated, and terminated in different forms of epilepsy is central to enabling new approaches to treatment, including pharmacological as well as surgical and device-oriented approaches. The stubbornly high rate of treatment-resistant epilepsy-one-third of patients-emphasizes the urgent need for new therapeutic strategies, including pharmacological, procedural, device linked, and genetic. The development of new approaches can be advanced by better animal models of seizure initiation that represent salient features of human epilepsy, as well as humanized models such as induced pluripotent stem cells and organoids. The rapid advances in genetic understanding of a subset of epilepsies provide a path to new and direct patient-relevant cellular and animal models, which could catalyze conceptualization of new treatments that may be broadly applicable across multiple forms of epilepsies beyond those arising from variation in a single gene. Remarkable advances in machine learning algorithms and miniaturization of devices and increases in computational power together provide an enhanced opportunity to detect and mitigate seizures in real time via devices that interrupt electrical activity directly or administer effective pharmaceuticals. Each of these potential areas for advance will be discussed in turn
The daily association between affect and alcohol use: a meta-analysis of individual participant data
Influential psychological theories hypothesize that people consume alcohol in response to the experience of both negative and positive emotions. Despite two decades of daily diary and ecological momentary assessment research, it remains unclear whether people consume more alcohol on days they experience higher negative and positive affect in everyday life. In this preregistered meta-analysis, we synthesized the evidence for these daily associations between affect and alcohol use. We included individual participant data from 69 studies (N = 12,394), which used daily and momentary surveys to assess affect and the number of alcoholic drinks consumed. Results indicate that people are not more likely to drink on days they experience high negative affect, but are more likely to drink and drink heavily on days high in positive affect. People self-reporting a motivational tendency to drink-to-cope and drink-to-enhance consumed more alcohol, but not on days they experienced higher negative and positive affect. Results were robust across different operationalizations of affect, study designs, study populations, and individual characteristics. These findings challenge the long-held belief that people drink more alcohol following increases in negative affect. Integrating these findings under different theoretical models and limitations of this field of research, we collectively propose an agenda for future research to explore open questions surrounding affect and alcohol use.The present study was funded by the Canadian Institutes of Health Research Grant MOP-115104 (Roisin M. OâConnor), Canadian Institutes of Health Research Grant MSH-122803 (Roisin M. OâConnor), John A. Hartford Foundation Grant (Paul Sacco), Loyola University Chicago Research Support Grant (Tracy De Hart), National Institute for Occupational Safety and Health Grant T03OH008435 (Cynthia Mohr), National Institutes of Health (NIH) Grant F31AA023447 (Ryan W. Carpenter), NIH Grant R01AA025936 (Kasey G. Creswell), NIH Grant R01AA025969 (Catharine E. Fairbairn), NIH Grant R21AA024156 (Anne M. Fairlie), NIH Grant F31AA024372 (Fallon Goodman), NIH Grant R01DA047247 (Kevin M. King), NIH Grant K01AA026854 (Ashley N. Linden-Carmichael), NIH Grant K01AA022938 (Jennifer E. Merrill), NIH Grant K23AA024808
(Hayley Treloar Padovano), NIH Grant P60AA11998 (Timothy Trull), NIH Grant MH69472 (Timothy Trull), NIH Grant K01DA035153 (Nisha Gottfredson), NIH Grant P50DA039838 (Ashley N. Linden-Carmichael),
NIH Grant K01DA047417 (David M. Lydon-Staley), NIH Grant T32DA037183 (M. Kushner), NIH Grant R21DA038163 (A. Moore), NIH Grant K12DA000167 (M. Potenza, Stephanie S. OâMalley), NIH Grant R01AA025451 (Bruce Bartholow, Thomas M. Piasecki), NIH Grant P50AA03510 (V. Hesselbrock), NIH Grant K01AA13938 (Kristina M. Jackson), NIH Grant K02AA028832 (Kevin M. King), NIH Grant T32AA007455 (M. Larimer), NIH Grant R01AA025037 (Christine M. Lee, M. Patrick), NIH Grant R01AA025611 (Melissa Lewis), NIH Grant R01AA007850 (Robert Miranda), NIH Grant R21AA017273 (Robert Miranda), NIH Grant R03AA014598 (Cynthia Mohr), NIH Grant R29AA09917 (Cynthia Mohr), NIH Grant T32AA07290 (Cynthia Mohr), NIH Grant P01AA019072 (P. Monti), NIH Grant R01AA015553 (J. Morgenstern), NIH Grant R01AA020077 (J. Morgenstern), NIH Grant R21AA017135 (J. Morgenstern), NIH Grant R01AA016621 (Stephanie S. OâMalley), NIH Grant K99AA029459 (Marilyn Piccirillo), NIH Grant F31AA022227 (Nichole Scaglione), NIH Grant R21AA018336 (Katie Witkiewitz), Portuguese State Budget Foundation for Science and Technology Grant UIDB/PSI/01662/2020 (Teresa Freire), University of Washington Population Health COVID-19 Rapid Response Grant (J. Kanter, Adam M. Kuczynski), U.S. Department of Defense Grant W81XWH-13-2-0020 (Cynthia Mohr), SANPSY Laboratory Core Support Grant CNRS USR 3413 (Marc Auriacombe), Social Sciences and Humanities Research Council of Canada Grant (N. Galambos), and Social Sciences and Humanities Research Council of Canada Grant (Andrea L. Howard)
THE NEEDLE in the 100 deg<sup>2</sup> HAYSTACK: UNCOVERING AFTERGLOWS of FERMI GRB<inf>s</inf> with the PALOMAR TRANSIENT FACTORY
The Fermi Gamma-ray Space Telescope has greatly expanded the number and energy window of observations of gamma-ray bursts (GRBs). However, the coarse localizations of tens to a hundred square degrees provided by the Fermi GRB Monitor instrument have posed a formidable obstacle to locating the bursts' host galaxies, measuring their redshifts, and tracking their panchromatic afterglows. We have built a target-of-opportunity mode for the intermediate Palomar Transient Factory in order to perform targeted searches for Fermi afterglows. Here, we present the results of one year of this program: 8 afterglow discoveries out of 35 searches. Two of the bursts with detected afterglows (GRBs 130702A and 140606B) were at low redshift (z = 0.145 and 0.384, respectively) and had spectroscopically confirmed broad-line Type Ic supernovae. We present our broadband follow-up including spectroscopy as well as X-ray, UV, optical, millimeter, and radio observations. We study possible selection effects in the context of the total Fermi and Swift GRB samples. We identify one new outlier on the Amati relation. We find that two bursts are consistent with a mildly relativistic shock breaking out from the progenitor star rather than the ultra-relativistic internal shock mechanism that powers standard cosmological bursts. Finally, in the context of the Zwicky Transient Facility, we discuss how we will continue to expand this effort to find optical counterparts of binary neutron star mergers that may soon be detected by Advanced LIGO and Virgo. © 2015. The American Astronomical Society. All rights reserved
Recommended from our members
Diazepam effect during early neonatal development correlates with neuronal Clâ
Abstract Objective: Although benzodiazepines and other GABAA receptors allosteric modulators are used to treat neonatal seizures, their efficacy may derive from actions on subcortical structures. Side effects of benzodiazepines in nonseizing human neonates include myoclonus, seizures, and abnormal movements. Excitatory actions of GABA may underlie both side effects and reduced anticonvulsant activity of benzodiazepines. Neocortical organotypic slice cultures were used to study: (1) spontaneous cortical epileptiform activity during early development; (2) developmental changes in [Clâ]i and (3) whether diazepam's anticonvulsant effect correlated with neuronal [Clâ]i. Methods: Epileptiform activity in neocortical organotypic slice cultures was measured by field potential recordings. Clâ changes during development were assessed by multiphoton imaging of neurons transgenically expressing a Clâsensitive fluorophore. Clinically relevant concentrations of diazepam were used to test the anticonvulsant effectiveness at ages corresponding to premature neonates through early infancy. Results: (1) Neocortical organotypic slices at days in vitro 5 (DIV5) exhibited spontaneous epileptiform activity. (2) Epileptiform event duration decreased with age. (3) There was a progressive decrease in [Clâ]i over the same age range. (4) Diazepam was ineffective in decreasing epileptiform activity at DIV5â6, but progressively more effective at older ages through DIV15. (5) At DIV5â6, diazepam worsened epileptiform activity in 50% of the slices. Interpretation The neocortical organotypic slice is a useful model to study spontaneous epileptiform activity. Decreasing [Clâ]i during development correlates with decreasing duration of spontaneous epileptiform activity and increasing anticonvulsant efficacy of diazepam. We provide a potential explanation for the reports of seizures and myoclonus induction by benzodiazepines in newborn human neonates and the limited electrographic efficacy of benzodiazepines for the treatment of neonatal seizures
Recommended from our members
Developmental Decrease of Neuronal Chloride Concentration Is Independent of Trauma in Thalamocortical Brain Slices
The intraneuronal chloride concentration ([Cl-]i) is paramount for determining the polarity of signaling at GABAA synapses in the central nervous system. Sectioning hippocampal brain slices increases [Cl-]i in the superficial layers. It is not known whether cutting trauma also increases [Cl-]i in the neocortex and thalamus, and whether the effects of trauma change during development. We used Cl- imaging to study the [Cl-]i vs. the distance from the cut surface in acute thalamocortical slices from mice at developmental ages ranging from post-natal day 5 (P5) to P20. We demonstrate: 1) [Cl-]i is higher in the most superficial areas in both neocortical and thalamic brain slices at all ages tested and, 2) there is a developmental decrease in [Cl-]i that is independent of acute trauma caused by brain slicing. We conclude that [Cl-]i has a developmental progression during P5-20 in both the neocortex and thalamus. However, in both brain regions and during development the neurons closest to the slicing trauma have an elevated [Cl-]i
- âŠ