91 research outputs found

    Nipah Virus Strain Variation

    Get PDF

    Corrigendum to "Global correlates of emerging zoonoses: Anthropogenic, environmental, and biodiversity risk factors" [Int. J. Infect. Dis. 53 (Supplement) (December 2016) 21]

    Get PDF
    The authors regret that Dr Moreno di Marco's name was published with errors in the original abstract. The authors would like to apologise for any inconvenience caused

    Taxonomic patterns in the zoonotic potential of mammalian viruses

    Get PDF
    Predicting and simplifying which pathogens may spill over from animals to humans is a major priority in infectious disease biology. Many efforts to determine which viruses are at risk of spillover use a subset of viral traits to find trait-based associations with spillover. We adapt a new method—phylofactorization—to identify not traits but lineages of viruses at risk of spilling over. Phylofactorization is used to partition the International Committee on Taxonomy of Viruses viral taxonomy based on non-human host range of viruses and whether there exists evidence the viruses have infected humans. We identify clades on a range of taxonomic levels with high or low propensities to spillover, thereby simplifying the classification of zoonotic potential of mammalian viruses. Phylofactorization by whether a virus is zoonotic yields many disjoint clades of viruses containing few to no representatives that have spilled over to humans. Phylofactorization by non-human host breadth yields several clades with significantly higher host breadth. We connect the phylogenetic factors above with life-histories of clades, revisit trait-based analyses, and illustrate how cladistic coarse-graining of zoonotic potential can refine trait-based analyses by illuminating clade-specific determinants of spillover risk

    Lack of population genetic structure and host specificity in the bat fly, Cyclopodia horsfieldi, across species of Pteropus bats in Southeast Asia

    Get PDF
    Background: Population-level studies of parasites have the potential to elucidate patterns of host movement and cross-species interactions that are not evident from host genealogy alone. Bat flies are obligate and generally host-specific blood-feeding parasites of bats. Old-World flies in the family Nycteribiidae are entirely wingless and depend on their hosts for long-distance dispersal; their population genetics has been unstudied to date. Methods: We collected a total of 125 bat flies from three Pteropus species (Pteropus vampyrus, P. hypomelanus, and P. lylei) from eight localities in Malaysia, Cambodia, and Vietnam. We identified specimens morphologically and then sequenced three mitochondrial DNA gene fragments (CoI, CoII, cytB; 1744 basepairs total) from a subset of 45 bat flies. We measured genetic diversity, molecular variance, and population genetic subdivision (FST), and used phylogenetic and haplotype network analyses to quantify parasite genetic structure across host species and localities. Results: All flies were identified as Cyclopodia horsfieldi with the exception of two individuals of Eucampsipoda sundaica. Low levels of population genetic structure were detected between populations of Cyclopodia horsfieldi from across a wide geographic range (~1000 km), and tests for isolation by distance were rejected. AMOVA results support a lack of geographic and host-specific population structure, with molecular variance primarily partitioned within populations. Pairwise FST values from flies collected from island populations of Pteropus hypomelanus in East and West Peninsular Malaysia supported predictions based on previous studies of host genetic structure. Conclusions: The lack of population genetic structure and morphological variation observed in Cyclopodia horsfieldi is most likely due to frequent contact between flying fox species and subsequent high levels of parasite gene flow. Specifically, we suggest that Pteropus vampyrus may facilitate movement of bat flies between the three Pteropus species in the region. We demonstrate the utility of parasite genetics as an additional layer of information to measure host movement and interspecific host contact. These approaches may have wide implications for understanding zoonotic, epizootic, and enzootic disease dynamics. Bat flies may play a role as vectors of disease in bats, and their competence as vectors of bacterial and/or viral pathogens is in need of further investigation

    Global hotspots and correlates of emerging zoonotic diseases.

    Get PDF
    Zoonoses originating from wildlife represent a significant threat to global health, security and economic growth, and combatting their emergence is a public health priority. However, our understanding of the mechanisms underlying their emergence remains rudimentary. Here we update a global database of emerging infectious disease (EID) events, create a novel measure of reporting effort, and fit boosted regression tree models to analyze the demographic, environmental and biological correlates of their occurrence. After accounting for reporting effort, we show that zoonotic EID risk is elevated in forested tropical regions experiencing land-use changes and where wildlife biodiversity (mammal species richness) is high. We present a new global hotspot map of spatial variation in our zoonotic EID risk index, and partial dependence plots illustrating relationships between events and predictors. Our results may help to improve surveillance and long-term EID monitoring programs, and design field experiments to test underlying mechanisms of zoonotic disease emergence

    Using Mathematical Models In A Unified Approach To Predicting The Next Emerging Infectious Disease

    Get PDF
    Emerging infectious diseases (EIDs) pose a significant threat to human health, global economies, and conservation (Smolinski et al. 2003). They are defined as diseases that have recently increased in incidence (rate of the development of new cases during a given time period), are caused by pathogens that recently moved from one host population to another, have recently evolved, or have recently exhibited a change in pathogenesis (Morse 1993; Krause 1994). Some EIDs threaten global public health through pandemics with large-scale mortality (e.g., HN/AIDS). Others cause smaller outbreaks but have high case fatality ratios or lack effective therapies or vaccines (e.g. Ebola virus or methicillin-resistant Staphylococcus aureus). As a group, EIDs cause hundreds of thousands of deaths each year, and some outbreaks (e.g., SARS, H5N1) have cost the global economy tens of billions of dollars. Emerging diseases also affect plants, livestock, and wildlife and are recognized as a Significant threat to the conservation of biodiversity (Daszak et al. 2000). Approximately 60% of emerging human disease events are zoonotic, and over 75% of these diseases originate in wildlife (Jones et al. 2008). The global response to such epidemics is frequently reactive, and the effectiveness of conventional disease control operations is often too little, too late\u27: With rising globalization, the ease with which diseases spread globally has increased dramatically in recent times. Also, interactions between humans and wildlife have intensified through trade markets, agricultural intensification, logging and mining, and other forms of development that encroach into wild areas. Rapid human population growth, land use change, and change in global trade and travel require a shift toward a proactive, predictive, and preventive approaches for the next zoonotic pandemic

    Satellite Telemetry and Long-Range Bat Movements

    Get PDF
    Background: Understanding the long-distance movement of bats has direct relevance to studies of population dynamics, ecology, disease emergence, and conservation. Methodology/Principal Findings: We developed and trialed several collar and platform terminal transmitter (PTT) combinations on both free-living and captive fruit bats (Family Pteropodidae: Genus Pteropus). We examined transmitter weight, size, profile and comfort as key determinants of maximized transmitter activity. We then tested the importance of bat-related variables (species size/weight, roosting habitat and behavior) and environmental variables (day-length, rainfall pattern) in determining optimal collar/PTT configuration. We compared battery- and solar-powered PTT performance in various field situations, and found the latter more successful in maintaining voltage on species that roosted higher in the tree canopy, and at lower density, than those that roost more densely and lower in trees. Finally, we trialed transmitter accuracy, and found that actual distance errors and Argos location class error estimates were in broad agreement. Conclusions/Significance: We conclude that no single collar or transmitter design is optimal for all bat species, and that species size/weight, species ecology and study objectives are key design considerations. Our study provides a strategy for collar and platform choice that will be applicable to a larger number of bat species as transmitter size and weight continue to decrease in the future

    Ranking the risk of animal-to-human spillover for newly discovered viruses

    Get PDF
    The death toll and economic loss resulting from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic are stark reminders that we are vulnerable to zoonotic viral threats. Strategies are needed to identify and characterize animal viruses that pose the greatest risk of spillover and spread in humans and inform public health interventions. Using expert opinion and scientific evidence, we identified host, viral, and environmental risk factors contributing to zoonotic virus spillover and spread in humans. We then developed a risk ranking framework and interactive web tool, SpillOver, that estimates a risk score for wildlife-origin viruses, creating a comparative risk assessment of viruses with uncharacterized zoonotic spillover potential alongside those already known to be zoonotic. Using data from testing 509,721 samples from 74,635 animals as part of a virus discovery project and public records of virus detections around the world, we ranked the spillover potential of 887 wildlife viruses. Validating the risk assessment, the top 12 were known zoonotic viruses, including SARS-CoV-2. Several newly detected wildlife viruses ranked higher than known zoonotic viruses. Using a scientifically informed process, we capitalized on the recent wealth of virus discovery data to systematically identify and prioritize targets for investigation. The publicly accessible SpillOver platform can be used by policy makers and health scientists to inform research and public health interventions for prevention and rapid control of disease outbreaks. SpillOver is a living, interactive database that can be refined over time to continue to improve the quality and public availability of information on viral threats to human health
    • …
    corecore