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USING MATHEMATICAL MODELS IN A UNIFIED 
APPROACH TO PREDICTING THE NEXT EMERGING 
INFECTIOUS DISEASE 

Tiffany L. Bogich, Kevin 1. Olival, Parviez R. Hosseini, Car]os 
Zambrana-Torrelio, Elizabeth Loh, Sebastian Funk, Ilana L. 
Brito, Jonathan H. Epstein, John S. Brownstein, Damien O. 
Joly, Marc A. Levy, Kate E. Jones, Stephen S. Morse, A. Alonso 
Aguirre, William B. Karesh, Jonna A. K. Mazet, and Peter Daszak 

Emerging infectious diseases (EIDs) pose a signifi

cant threat to human health, global economies, and 

conservation (Smolinski et al. 2003). They are defined 

as diseases that have recently increased in incidence 

(rate of the development of new cases during a given 

time period), are caused by pathogens that recently 

moved from one host population to another, have 

recently evolved, or have recently exhibited a change in 

pathogenesis (Morse 1993; Krause 1994). Some EIDs 

threaten global public health through pandemics with 

large-scale mortality (e.g., HN/AIDS). Others cause 

smaller outbreaks but have high case fatality ratios 

or lack effective therapies or vaccines (e.g. Ebola virus 

or methicillin-resistant Staphylococcus aureus). As a 

group, EIDs cause hundreds of thousands of deaths 

each year, and some outbreaks (e.g., SARS, H5N1) 

have cost the global economy tens of billions of 

dollars. Emerging diseases also affect plants, live

stock, and wildlife and are recognized as a Significant 

threat to the conservation of biodiversity (Daszak 

et al. 2000). Approximately 60% of emerging human 

disease events are zoonotic, and over 75% of these 

diseases originate in wildlife (Jones et al. 2008). The 

global response to such epidemics is frequently reac

tive, and the effectiveness of conventional disease 

control operations is often "too little, too late': With 

rising globalization, the ease with which diseases 

spread globally has increased dramatically in recent 

times. Also, interactions between humans and wildlife 

have intensified through trade markets, agricultural 

intensification, logging and mining, and other forms 

of development that encroach into wild areas. Rapid 

human population growth, land use change, and 

change in global trade and travel require a shift toward 

a proactive, predictive, and preventive approaches for 

the next zoonotic pandemic. 

The key emergence event for most infectious dis

eases is a change in transmission dynamics within or 

between host populations. The interconnectedness 

of humans, domestic animals, and wildlife facilitates 

the spillover of pathogens between hosts (Daszak 

et al. 2000). External forces, such as agricultural 
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intensification, global travel, and the accidental trans

location of pathogens, augment this interaction. The 

role of zoonotic pathogens in causing human dis

ease may be particularly important because when 

these diseases first emerge, humans have no acquired 

immunity to novel pathogens, resulting in sometimes 

highly lethal infections (e.g., AIDS/HIV, Ebola virus 

disease). 

Despite the huge social, demographic, and eco

nomic impact of EIDs, there has been little advance

ment in understanding how anthropogenic changes 

drive disease emergence and in developing proactive, 

predictive, and preventive approaches (Hufnagel et al. 

2004; Weiss and McMichael 2004; Ferguson et al. 

2005; Wolfe et al. 200S). In this chapter, we describe 

a strategy to create a unifying predictive model for 

the zoonotic and pandemic potential of a given region 

by integrating predictive models of each stage of 

the process of zoonotic disease emergence. The three 

stages of emergence that we address are (1) a "pre

emergence" phase, where anthropogenic changes 

cause animal populations to come into contact, lead

ing to cross-species transmission of their pathogens, 

(2) a spillover stage, where animal pathogens enter 

human populations, and (3) pandemic emergence, 

where pathogens are able to exploit human travel and 

trade networks to emerge across international and 

regional boundaries. Each stage of the emergence 

process requires a different approach and analyses at 

different scales. Each of these modeling exercises is 

then linked to data collection on the ground. Models 

are then parameterized through effective active and 

passive surveillance of wildlife, monitoring of key

words in media, and analysis of published literature. 

This modeling approach also helps to increase 

surveillance efficiency by facilitating spatial and spe

cies-specific (e.g., phylogenetic) targeting of wildlife 

to sample for likely zoonotic pathogens. Our strategy 

is designed for the early detection of novel pathogens 

with human pandemic potential, to allow animal and 

human health professionals the opportunity to pre

dict emergence and prevent spread. It also provides 

the tools to target important sentinel species at active 

human interfaces to improve on the efficiencies of 

previous surveillance for rare pathogens of interest. 

Our vision is to expand on lessons learned in order to 

better assess local capacity, increase the value ofinfec

tious disease modeling, implement targeted and adap

tive wildlife disease surveillance systems, develop and 

deliver new technologies to improve efforts in hotspots, 

and use cutting-edge information management and 

communication tools to bring the world closer to real

izing an integrated, globalized approach to controlling 

emerging zoonotic diseases. 

In this chapter, we focus in particular on three key 

steps in designing this integrated modeling and field 

surveillance approach: (1) the selection of geographic 

sites for surveillance, (2) the selection of target species 

for sampling, and (3) the construction of predictive 

models of spread and future emergence (Table 42.1). 

DEFL"'ITIONS, DRl VERS, 
AND ErASES 

History and Debate over the Definition 
of an EID 

In the introduction to this chapter, we defined EIDs 

as diseases that have recently increased in incidence, 

have moved from one host population to another, are 

caused by recently evolved strains, or exhibit a change 

in pathogenesis. We use this definition because, 

despite the widely accepted importance of EIDs, 

there is little agreement on the exact properties that 

classify a disease as "emerging:' While the term has 

generally been used to emphasize the novelty of a 

given infectious disease, closer inspection reveals that 

there is no consensus on what defines this novelty. 

With an increasing number of studies investigating 

the phenomenon of emergence and the underlying 

environmental and anthropogenic drivers (e.g., Taylor 

et al. 2001; Jones et al. 2008), it is important to agree 

on a medically and biologically meaningful definition 

of emergence. Such a definition should, in principle, 

allow one to decide not only whether a given infec

tious disease can be called "emerging", but also when 

and where exactly it emerged, and to do so via rigor

ous and quantifiable criteria. 
The first mention of EIDs that can be found on 

MEDLINE was provided by Oster (1961), who con

centrated solely on animal diseases but supplied a 

definition that can be generalized to human diseases. 

He describes the "sudden invasion by epizootic dis

eases into countries where they have never before 

struck" and mentions that these "have been described 

as 'emerging diseases; a new term which would seem 

to indicate new infectious disease situations." 
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Table 42.1 Summary of Questions, Approaches, and Results Related to Three Components ofEID 

Surveillance and Prediction 

Objective Questions Approach Result 

l. Selecting - What is the risk of transmission to humans? Spatial and - Geographically refined 

geographic - What is the distribution of undiscovered temporal surveillance 

sites for pathogens? What areas have been general strategies 

surveillance undersampled? linear - Refined "hotspot" 

- What are the spatial drivers of disease models maps 

emergence? - Sub-regional "hotspot" 

- How will the risk of disease emergence maps 

change geographically? 
2. Selecting - Which wildlife species are the greatest risk Spatial and - Refined surveillance 

species for of being the source for zoonotic disease temporal strategies according 

sampling emergence? general to phylogenetic 

linear models relatedness and 

contact opportunities 
3. Predicting - Can the potential of a region to produce Matrix-based - A global emerging 

spread and pandemic pathogens be measured? population infectious disease 

future - Can the vulnerability of a region to the simulation vulnerability map 

emergence spread of an BID be determined? 

events 

There are two ways in which a disease can be con

sidered new (Table 42.2). In the first instance, the 

definition can be relatively specific. A disease may be 

"emerging" in that it has crossed the species barrier to 

infect a novel host, or that its clinical signs or symp

toms or pathogenicity has changed. In other words, 

the disease is genuinely new to a host. In this sense, 

every disease can emerge only once in each host. Some 

diseases, such as measles (Babbott and Gordon 1954), 

sleeping sickness (Steverding 2008), and bubonic 

plague (Hays 2006), emerged in prehistoric or ancient 

times, whereas others, such as Ebola virus (World 

Health Organization 1978), Nipah virus (Chua et al. 

2000), and SARS (Guan et al. 2003), emerged in 
recent years. 

Some authors, on the other hand, have proposed 

defining BIDs in the wider purview of all diseases that 

are increasing in incidence (Institute of Medicine 

1992; Morse 1993; Levins et al.1994; Morse 1995; Jones 
et al. 2008). This approach includes not only diseases 

that are genuinely new in a host and are increasing in 

incidence by virtue of being recognized in the first 

place, but also diseases that were previously present at 

a lower level or are expanding to new areas. In this 

sense, a disease can emerge and re-emerge multiple 

times and in different locations. 

With increasing interest in emerging infectious dis

eases, it is important to agree on the meaning of the 

term, which has been used for a variety of different and 

sometimes seemingly unrelated phenomena. In previ

ous definitions, it has been interpreted in two ways: as 

the appearance of a new pathogen in humans or as a dis

ease becomes a growing concern. These two scenarios 

can be distinguished by differentiating between primary 

and secondary emergence. For this chapter, we limit our 

focus to those EIDs that can infect humans. On the 

basis of the distinction between primary and secondary 

emergence, the following definitions are proposed for 

an emerging infectious disease (Table 42.2): 

• Primary emergence: A novel infectious disease 

appears in humans by means of transmission from 
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Table 42.2 Previous Definitions ofEIDs 

Primary Emergence Secondary Emergence 

New host New symptoms Detection Increased Expansion 

incidence 

Oster (1961) 

Lederberg et al. (1992) 

Morse (1993) 

Levins et al. (1994) 

Morse (1995) 

Garnett and Holmes (1996) 

Kilbourne (1996) 

Included factors of primary emergence were crossing of the species barrier to adapt to a new host (humans), the appearance of new symptoms 

or new pathogenicity, and new detection of a disease. Included factors of secondary emergence were an increase in incidence and expansion to 

a new area. Morse (1995) lists the appearance of an infection "for the first time" as emergence, which fits all categories of primary emergence, 

without being explicit about the mechanisms. 

animals or the environment and adaptation to 

infecting humans, or through evolution within 

human hosts to develop new pathogenicity or 

resistance to treatment. In this case the first 

recorded cluster in humans is taken as the EID 

event. If an earlier case than the previously earliest 

known case is found retrospectively (as has 

happened for HIV), the timing of the event 

should be corrected accordingly. 

Secondary emergence: An existing infectious 

disease increases in incidence in a population in a 

way that constitutes a significant change with 

respect to a baseline incidence. This is the case 

when a disease occurs where it has never 

previously been reported (and the baseline 

incidence was zero), or when a disease displays a 

trend of increasing incidence with respect to a 

non-zero incidence. The timing of the emergence 

event, in this case, should be the beginning of the 

increase. 

Characterizing the Drivers 
of Emergence 

Despite the threat posed by EIDs, we still do not fully 

understand the mechanism of emergence; instead, we 

rely heavily on a reactive approach of responding to 

pathogens after they have emerged. We must first take 

a broad-scale, ecological approach to understanding 

the processes driving emergence. The process of 

disease emergence is complex and generally driven 

by factors that "provide conditions that allow for a 

select pathogen to expand and adapt to a new niche" 

(Smolinski et al. 2003). These factors are largely envi

ronmental, ecological, political, economic, and social 

forces, which function on a range of different scales. 

During the past two decades, numerous studies have 

classified emerging diseases according to the factors 

underlying their emergence, commonly referring to 

these factors or processes as drivers of emergence. 

The first attempt to classify drivers of emergence 

was published by the Institute of Medicine (10M) 

in 1992 (Lederberg et al. 1992). This report identi

fied six factors in the emergence of infectious diseases: 

(1) human demographics and behavior; (2) technol

ogy and industry; (3) economic development and land 

use; (4) international travel and commerce; (5) micro

bial adaptation and change; and (6) breakdown of 

public health measures. These factors are not mutually 

exclusive and are relevant to different stages of emer

gence (e.g., spillover or an increase in incidence). 

Seven additional drivers were added in a follow-up 

10M report in 2003 (Smolinski et al. 2003): "human 
susceptibility to infection," "climate and weather,· 

"changing ecosystems;' "poverty and social inequi~· 
"war and famine," "lack of political will;' and "intent to 

harm:' Other studies have found that disease emer

gence from animal hosts to humans is driven mainly 
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by anthropogenic forces, such as land use change (Patz 

et al. 2004) or global trade and travel across ecological 

and environmental boundaries (Hufnagel et aI. 2004). 

The classification of these "factors in emergence" 

paved the way for research with respect to the under

lying drivers of infectious disease emergence. 

At larger spatial scales, datasets are freely available 

for many of these drivers (e.g., human population den

sity or land use change). Analyzing these datasets 

allows us to move beyond a correlative approach for 

testing drivers of disease to a predictive framework 

(jones et al. 2008; Dunn et al. 2010). Datasets for each 

driver are often correlated, so it is important to check 

for independence among variables when using multi

ple driver datasets in a single analysis. Determining, 

quantifying, and ranking drivers of emergence at 

smaller spatial scales can be more complicated. Often 

an emergence event arises from multiple drivers inter

acting simultaneously or sequentially. Further, the 

time lag between the driver acting directly on a host, 

pathogen, or environment and the origin of the emer

gence event can vary. The duration of this time lag may 

scale with organism generation time; for example, a 

driver acting directly on pathogens (short generation 

time) would have a much smaller lag in effect than a 

driver acting on a mammalian host species (longer 

generation time). 

The spread of genetically based resistance will 

always lag behind the emergence of a pathogen and 

may be affected by other drivers. One could estimate a 

probability curve for this, and estimate lag time based 

on the slope of the curve. While drivers of emergence 

are indeed complicated, we can still make inferences 

on the role of multiple drivers acting simultaneously 

or sequentially, the time lag between drivers and 

emergence, and the possibility of unintentional driv

ers, those that were originally thought to be mitigating 

forces. 

Quantifying Missing Reports and 
Biases in Reporting 

EXisting datasets have identified over 3SO infec

tious diseases that have emerged in the past 70 years 

(Woolhouse and Gaunt 2007; Jones et al. 2008; Dunn 

et al. 2010). It is likely, however, that there have 

been numerous unreported cases of novel diseases. 

Whether the numbers of emerging infectious dis

eases are on the rise or health officials have merely 

grown more aware of these events is debatable and 

can only be estimated against the backdrop of the 

highly uneven surveillance capabilities across the 

globe. EID surveillance has become a high-priority 

issue for both local and global health authorities, 

thereby making reporting more equitable. Thorough, 

accurate disease surveillance reporting relies on 

comprehensive, unbiased participation of all national 

and sub-national health agencies. This has been 

highlighted in recent years by the SARS epidemic, 

HSNI highly pathogenic avian influenza, the global 

HINI influenza pandemic, and, most poignantly, ilie 

ongoing HIV pandemic. 

These diseases, whose spread may have at one 

time been constrained locally, are increasingly tran

scending national boundaries (Institute of Medicine 

2009). Local outbreaks are of concern to the global 

community because of their potential for pervasive 

spread. We rely on human reports of these types of 

local events to detect epidemics with pandemic poten

tial that require global action. However, this type 

of participatory reporting is incomplete and biased 

due to an uneven distribution of health systems, detec

tion mechanisms, and communication infrastructure. 

Disincentives to reporting, such as negative political 

and economic consequences of control measures, 

may also result in reporting bias. When trying to 

determine the underlying drivers for global disease 

emergence events, the source of biases in reporting 

must be accounted for to ensure that true differences 

are reported rather ilian artifacts of sampling or 

reporting. 

A number of factors may affect the probability 

of detecting novel BIDs or influence the lag time 

between infection and detection of a novel pathogen. 

Factors intrinsic to both the pathogen and the exposed 

individual-such as ilie pathogen's virulence and the 

individual's socioeconomic status-will determine 

whether the individual seeks medical attention and 

whether the medical examiner identifies the infection 

as novel. Unusually infectious or virulent pathogens 

may have a greater chance of being reported due to 

large numbers of infected individuals or more detri

mental health effects. Long latency periods, during 

which individuals are asymptomatic, lead to temporal 

biases due to the lag time between the initial case and 

detection, as was the case with variant Creutzfeldt

Jakob disease and HN / AIDS, which is suspected 

to have emerged in the United States more than a 
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decade before it was identified in 1981 (Gilbert et al. 

2007). 

Socioeconomic factors also playa role both as a 

driver of disease emergence and as a source of report

ing bias. Lower-income countries have higher rates of 

malnutrition and reduced access to potable drinking 

water, sanitation, immunizations, and health services 

(Ruger and Kim 2006; World Health Organization 

2010). Furthermore, many low-income countries, par

ticularly in sub-Saharan Mrica, are faced with double

digit HIV infection rates. These populations are 

more susceptible to EIDs due to greater exposure to 

infective agents and depressed immunity. Whether or 

not infected individuals in low-income countries 

receive medical attention depends also on the avail

ability, accessibility, and appropriateness of medical 

services and the individual overall ability to use them 

(Ensor and Cooper 2004). GDP and population den

sity are the strongest correlates with the supply of 

qualified medical staff, healthcare facilities, diagnos

tics, and treatments (World Health Organization 

2010 ). 

The first step in correcting for this reporting bias 

of EIDs is to identify the sources for potential bias 

in the data. Then, proxies may be determined that help 

account for this non-random bias (i.e., distance to 

nearest hospital, use of traditional medicine, or per 

capita spending on healthcare). Reporting of disease 

is also non-random throughout the world because of 

local capacity to conduct and publish research, and 

the dearth of investigation taking place in underdevel

oped and hard-to-reach areas. To control for this when 

building their model of global EID risk, Jones et al. 

(2008) constructed an index of sampling bias based 

on author addresses of publications in the Journal of 
InfectiOUS Disease from 1973 to 2008. 

Caution must be taken in choosing potential data

sets to act as proxies for bias measures. There must be 

quantification or evidence supporting a mechanistic 

link between the proxy and the outcome. Using this 

approach, we posit that the number of infectious dis

eases to have emerged over the past half-century is 

likely much greater than we had previously anticipated. 

Others have also suggested that recent exposure events 

are more common, as a result of more suboptimal 

attempts by pathogens to invade novel populations in 

the past-sometimes termed "viral chatter" (Antia 

et al. 2003; Woolhouse et al. 2005; Wolfe et al. 2007). 

SITE SELECTIO"J. SPECIES 
SELECTlOK, AND PREDICTIVE 
MODELfKG 

Select Geographic Sites for 
Surveillance 

Jones et al. (2008) provided an example of a compre

hensive approach to identifying sites as priority areas 

for sampling for the next EIDs. These sites have been 

dubbed "hotspots" and represent areas of higher ErD 

risk. This process of identifying EID hotspots began 

with an exhaustive literature search to collect biologi

cal, temporal, and spatial data for EID "events" in 

human populations between 1940 and present. Jones 

et al. (2008) based their database of EIDs on previous 

work (Taylor et al. 2001) and updated it with addi

tional information on microbial pathogens. All types 

of pathogens found in humans were entered into 

the database, including sexually transmitted diseases 

(STDs), zoonoses, drug-resistant microbes, vector

borne diseases, and food- and water-borne infections. 

Information on time, location, pathogen type, trans

mission mode, other hosts, and pathogen life history 

traits was added. Further, the most commonly cited 

causes of emergence for each pathogen were deter

mined (Daszak et al. 2000; Smolinski et al. 2003; 

Morens et al. 2004; Patz et al. 2004; Weiss and 

McMichael 2004). Finally, shape files defining the 

published boundaries of the initial emergence event 

were created in ArcGIS (ESRI 2005). 

The final published database covered global events 

between 1940 and 2004 and reported 335 EID events 

in humans. Using these 335 EID events, a risk model 

was constructed using logistic regression to deter

mine the probability of an EID event in every I-degree 

grid cell of the world. These estimates are based on 

historical patterns of EID events and their environ

mental and biological drivers (including human pop

ulation density and growth, mammal diversity, 

precipitation, temperature, latitude, and reporting 

effort). Then, an EID risk value was calculated for 

every I-degree grid cell of the world using human pop

ulation density and growth, mammal density, latitude, 

and rainfall with the coefficients of the multivariate 

logistic regression model (Jones et al. 2008). 

Previous efforts to understand patterns of 

EIDs have highlighted viral pathogens (particularly 
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negative-stranded RNA viruses) as a major threat 

because of their high rates of nucleotide substitution, 

often poor copy-editing, and higher capacity to adapt 

to new hosts (higher "evolvability"j Burke 1998). 

However,Jones et al. (2008) found that a majority of 

EID pathogens were bacterial, specifically novel drug

resistant strains. Controlling for reporting effort, the 

number of EIDs still showed a highly significant rela

tionship with time (generalized linear model with 

Poisson errors, offset by 10g(JID articles) (GLMp,]ID)' 

F"" = 96.4, P < 0.001), supporting the widespread 
claim that the threat ofEIDs to global health is increas

ing (Fauci 2001j Smolinski et al. 2003j Morens et al. 

2004j King et al. 2006). Even after controlling for 

reporting effort, the number ofEID events originating 

in wildlife reached the highest proportion in the most 

recent decade, highlighting the importance of under

standing the factors that increase the contact between 

wildlife and humans in developing any predictive 

model. The strong relationship between high wildlife 

host biodiversity-primarily found in low-latitude 

developing countries-and EID events caused by 

zoonotic pathogens from wildlife (e.g., SARS, Ebola) 

suggests that these geographic regions will continue 

to be a key source of novel EIDs in the future. It also 

reinforces the need for pathogen surveillance in wild 

animal populations as a forecasting measure for EIDs 

(Karesh and Cook 2005j Kuiken et al. 2005j King et al. 

2006). Jones et al. (2008) found that areas of the 

planet with the greatest EID risk also had the lowest 

levels of surveillance effort, therefore highlighting the 

importance of this approach for public health resource 
allocation. 

We have since updated the driver data and spatial 

resolution of the risk model in Jones et al. (2008). The 
original spatial resolution was approximately lOO-km' 

grid cells of the worldj using the native resolution of 

the driver datasets, we have reduced this resolution to 

1 km', allOWing for country-level EID risk maps to be 

drawn at a resolution useful for regional-level plan

ning. Mammal diversity per l-km' grid cell was calcu

lated using range maps based on Mammal Species 

of the World 2005. Human population density and 

growth were updated according to the Global Rural
Urban Mapping Project and the Gridded Population 

of the World (http://sedac.ciesin.columbia.edu/ gpw). 

At the global scale, the l-km risk map was developed 

using the same model coefficients as in Jones et al. 

(2008), but incorporates new driver datasets as 

described above at their native resolution, so the 

distribution of wildlife zoonotic EID risk (Fig. 42.1) 

is qualitatively comparable to that of the original 

risk map. At the country level, the improved datasets 

allow us to examine the influence of the two main 

drivers, mammal diversity and human population 
density, on EID risk. 

EID risk maps can allow us to select sites for sam

pling that we believe to be more likely to harbor the 

next EID-causing pathogen in wildlife. We can also 
test the hotspots model by sampling in paired "hot" 

and "cold" sites. This allows for the constant feedback 

of field data into models to revise and update the 

prediction ofEID risk. 

Seleet Species to Target for Sampling 

Life-History Tralts 

Species are not equal in their ability to harbor and 

transmit infectious diseases. For example, there is 

some debate as to whether certain characteristics 

of bats (e.g., their longevity, colonial roosting habits, 

and ability to fly and hibernate) may make them better 

viral reservoirs than otrer groups of mammals (see 

Chapter 14 in this book). A recent analysis of bat 

hosts and viruses (Turmelle and Oliva12009) shows 

that some species in a given area will be more likely 

to harbor a greater number of viruses than others, and 

that population genetic structure (F Syj related to migra

tory capacity and mixing of genetic populations) sig

nificantly correlates with their known viral diversity. 

F Sy is a measure of the genetic mixture of individuals 

between populations. Turmelle and Olival (2009) used 

a combined model that includes FsT' the International 
Union for Conservation of Nature (IUCN) species 

threat status, and a measure of research sampling bias, 

and found that these variables account for 33% of 

known viral diversity in bats (p = 0.02). Approaches 

similar to this, which account for species-specific 

ecological and evolutionary traits, may be useful 

for identifying species with the highest projected 

pathogen viral richness. We can combine this 

approach with a geographically targeted one to iden
tify the most cost-effective species (bats and other 

species) and locations to target for active wildlife 

surveillance. 
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'h Standard Deviation 

Figure 42.1 : 
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Global map of zoonotic emerging disease hotspots risk from wildlife based on the Jones et al. (2008) model and updated 
mammal diversity and human population density and growth driver datasets. Risk is given by a scale from low (0.00, white) 
to high (1.00, black) risk. 

Ph;r logenetic Relatedness 

Another factor in the process of emergence is host 

relatedness with humans. Potential similarities that 

arise from shared ancestry, such as receptors that allow 

a virus to enter a cell, may playa major role in facilitat

ing spillover of pathogens. To date, this assumption 

has not been explicitly tested in a phylogenetic frame

work, especially fo r viruses. Using host and pathogen 

data from the Jones et al. (2008) database, we have 

examined the distribution of wildlife and domestic 

hosts for pathogens known to cause human disease. 

Mammals appear to host the greatest proportion of 

pathogens emerging from wildlife to infect humans 

(Fig. 42.2) . We constructed a database of all known 

mammal-virus associations to test the importance 

of phylogeny in estimating the probability of a virus 
being shared between a non-human mammalian 

host and humans. The final mammal-virus associa

tion database consisted of over 1,200 pairs, including 

over 300 unique mammal species and over 200 

unique virus species. We also tested whether the prob

ability of a virus being shared between mammal hosts 

and humans increased with increasing human-host 

contact. 

After correcting for biases in reporting effort, we 
found that the probability of humans and non-human 

mammal hosts sharing a virus increased with increas

ing phylogenetic relatedness. Further, the probability 

of humans and non-human mammal hosts sharing a 

virus also increased with increasing contact opportu
nity, either through domestication or shared habitat. 

These results, combined with life-history trait target

ing and hotspot mapping, improve our understanding 
of host-pathogen transmission and help to provide 

basic guidance in the identification of wildlife species 

most likely to be the source of the next EID in humans. 
This understanding lays the groundwork for us to 

begin to predict the consequences of anthropogenic 

activities that increase interaction between humans, 
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Figure 42.2: 

The number of human EID events identified by Jones et al. 
(2008) by host species, as recorded in the original database. 
Mammals are responsible for by far the greatest number of 
human EIDs recorded thus far. 

domestic animals, and wildlife, such as logging, hunt
ing, or building roads. 

Future research is also necessary to understand 

the relative importance of host phylogeny versus con

tact opportunity with humans. This will allow for a 

better surveillance strategy that targets wildlife and 

domestic host species most likely to be the source of 
the next EID in humans. Using the model of phyloge

netic relatedness and contact opportunities described, 

these findings could be advanced further by using a 

Gap Analysis, a tool used to assess decision-making in 

conservation to identify areas that have been under

sampled for pathogens relative to mammalian (and 

phylogenetic) diversity. 

Contact Opportunities and Risk Interfaces 

Human contact with wildlife species, both direct and 

indirect, is undoubtedly an important factor in the 

transmission and emergence of new human pathogens 

from wildlife. High-risk contact interfaces could be 

the starting point for investigating pathogen diversity 

and prevalence (total number of cases of a disease in a 

population at a given time) in wildlife. Using estimates 

of the range and distribution of pathogen prevalence 
and incidence of every known EID family, we can use 

power calculations to look at how many individuals of 

each reservoir species need to be sampled within a 

given set of species in a specific interface. Calculating 
an expected prevalence of known EID families 

allows us to recognize unusual events during routine 

sampling. 

Our vision is that sampling of high-risk inter

faces could be conducted over multiple seasons to 

obtain a baseline species diversity dataset. Then teams 

can determine the number of individuals per species 

needed for sampling to increase detection probability 

using estimated prevalence values for known patho

gens (see Chapter 39 in this book). Next, a set of target 

species in the risk interface could be sampled, using 

the minimum number of individuals required for 

improved detection. Then if the prevalence is unusu

ally high, teams could conduct follow-up sampling of 

species identified and appropriate potential spillover 

hosts, in intact or native range where possible. 

Construct Predictive Models of Spread 
and Future Emergence 

Finally, once we have a good grasp of historical disease 
data, current disease risk, and the socioeconomic, 

environmental, and biodiversity profile of a given 

region, we can analyze the likelihood that a given 

pathogen could break out and become trulypandemic 
(as defined by cross-continental transmission). Our 

group has developed a vulnerability map of this 
type for avian influenza (Hosseini et al. 2010) that 

examined travel routes, airplane travel capacity, and 

connections between all major airports using ten years 

of information from Freedom of Information Act 

requests to the u.s. Fish and Wildlife Service on the 

global wildlife trade, trade data from the United 

Nations Food and Agriculture Organization, and data 

from the International Airline Transport Alliance. 

Trade routes, export and import statistics, travel, and 
wildlife trade patterns were examined to determine 

how these factors increase the risk of HINI spreading 

from a hotspot region into major global population 

centers. This model can be generalized to the country 

and airport level to determine which locations are 

most vulnerable to importation ofEIDs through trade 

and travel (Hosseini et al. 2010). This methodology 
could be crucial for identifying airports or transporta

tion centers where pathogen monitoring and inter

vention will be particularly effective in preventing 

disease spread. 
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TECHNOLOGICAL ADVA~CES 

Recent technological advances have improved our 

ability to identify high-risk interfaces for disease 

transmission and to detect novel pathogens before 

widespread spillover occurs. These advances include 

improvements in information technology, molecular 

diagnostics, and risk modeling. Further advances 

in communications technology will serve to bring 

countries traditionally isolated from international 

health networks into the global fold. Developments 

over the past 15 years allow us to gather reports from 

disparate sources and use the Internet as a common 

platform for exchanging information. Examples 

include the Global Public Health Intelligence Network, 

the Program for Monitoring Emerging Diseases, and 

HealthMap (http://www.healthmap.org). The great

est limitations of these networks are the underlying 

limitations of the national reporting systems and their 

bias towards English-speaking countries (Keller et al. 

2009). Telemedicine, or cell phone-mediated medi

cal diagnoses, will allow technologically underserved 

areas to leapfrog ahead without enduring massive 

infrastructure changes, due in great part to the near

ubiquitous use of cell phones in much of the develop

ing world. Systems are now being created to allow 

medical care providers to text coded reports to be 

analyzed en masse (Yang et al. 2009). Similarly, moni

toring the frequency of specific disease-related terms 

in daily Internet postings, search queries, or SMS text 

messages is now providing alternative forms of disease 

surveillance (Ginsberg et al. 2009). The extent to 

which telemedicine and the Internet decrease the dis

parity between countries in regard to access to health 

information and capacity to detect EIDs remains to be 

seen, but our increased capacity to reach understudied 

areas suggests that this will be significant. 

Platforms for pathogen discovery and our ability to 

follow footprints ofinfectious agents require the labo

ratory and computational infrastructure sufficiently 

powerful to dissect complex host-microbe interac

tions. For example, MassTag PCR is a multiplex plat

form that allows animal and human health specialists 

and epidemiologists to simultaneously test one sample 

for the presence of up to 30 different agents. MassTag 

PCR is a powerful tool for genomics, molecular virol

ogy, computational biology, surveillance, pathogen 

discovery, outbreak detection, and epidemiological 

investigations (Lipkin 2010). 

CONCLLSIOI\S 

EIDs are a growing and complex threat to global 

public health. Diseases emerge when socioeconomic 

or environmental changes provide the optimal condi

tions for pathogens to exploit new host populations, 

increase in pathogenicity, or otherwise amplify trans

mission. We present a broad-scale, strategic approach 

for selecting geographic sites and species for sampling 

and then present a framework for making predictions 

about the future risk of EIDs from wildlife. In our 

view, the best approach to detecting and preventing 

the next emerging infectious disease before it becomes 

a pandemic threat is through building a broad coali

tion of partners to discover, detect, and monitor dis

eases at the wildlife-human interface using a localized, 

risk-based approach. These efforts can integrate pre

dictive modeling, digital sensing, on-the-ground 

surveillance, and advanced molecular techniques at 

critical points for disease emergence, which then feed 

back to models for testing and refinement. 
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