94 research outputs found

    Real-space study of the growth of magnesium on ruthenium

    Full text link
    The growth of magnesium on ruthenium has been studied by low-energy electron microscopy (LEEM) and scanning tunneling microscopy (STM). In LEEM, a layer-by-layer growth is observed except in the first monolayer, where the completion of the first layer in inferred by a clear peak in electron reflectivity. Desorption from the films is readily observable at 400 K. Real-space STM and low-energy electron diffraction confirm that sub-monolayer coverage presents a moir\'e pattern with a 1.2 nm periodicity, which evolves with further Mg deposition by compressing the Mg layer to a 2.2 nm periodicity. Layer-by-layer growth is followed in LEEM up to 10 ML. On films several ML thick a substantial density of stacking faults are observed by dark-field imaging on large terraces of the substrate, while screw dislocations appear in the stepped areas. The latter are suggested to result from the mismatch in heights of the Mg and Ru steps. Quantum size effect oscillations in the reflected LEEM intensity are observed as a function of thickness, indicating an abrupt Mg/Ru interface.Comment: 21 pages, 10 figure

    Three-Fold Diffraction Symmetry in Epitaxial Graphene and the SiC Substrate

    Full text link
    The crystallographic symmetries and spatial distribution of stacking domains in graphene films on SiC have been studied by low energy electron diffraction (LEED) and dark field imaging in a low energy electron microscope (LEEM). We find that the graphene diffraction spots from 2 and 3 atomic layers of graphene have 3-fold symmetry consistent with AB (Bernal) stacking of the layers. On the contrary, graphene diffraction spots from the buffer layer and monolayer graphene have apparent 6-fold symmetry, although the 3-fold nature of the satellite spots indicates a more complex periodicity in the graphene sheets.Comment: An addendum has been added for the arXiv version only, including one figure with five panels. Published paper can be found at http://link.aps.org/doi/10.1103/PhysRevB.80.24140

    Real-time observation of epitaxial graphene domain reorientation.

    Get PDF
    Graphene films grown by vapour deposition tend to be polycrystalline due to the nucleation and growth of islands with different in-plane orientations. Here, using low-energy electron microscopy, we find that micron-sized graphene islands on Ir(111) rotate to a preferred orientation during thermal annealing. We observe three alignment mechanisms: the simultaneous growth of aligned domains and dissolution of rotated domains, that is, 'ripening'; domain boundary motion within islands; and continuous lattice rotation of entire domains. By measuring the relative growth velocity of domains during ripening, we estimate that the driving force for alignment is on the order of 0.1 meV per C atom and increases with rotation angle. A simple model of the orientation-dependent energy associated with the moiré corrugation of the graphene sheet due to local variations in the graphene-substrate interaction reproduces the results. This work suggests new strategies for improving the van der Waals epitaxy of 2D materials

    Imaging Spin Reorientation Transitions in Consecutive Atomic Co layers

    Full text link
    By means of spin-polarized low-energy electron microscopy (SPLEEM) we show that the magnetic easy-axis of one to three atomic-layer thick cobalt films on ruthenium crystals changes its orientation twice during deposition: one-monolayer and three-monolayer thick films are magnetized in-plane, while two-monolayer films are magnetized out-of-plane, with a Curie temperature well above room temperature. Fully-relativistic calculations based on the Screened Korringa-Kohn-Rostoker (SKKR) method demonstrate that only for two-monolayer cobalt films the interplay between strain, surface and interface effects leads to perpendicular magnetization.Comment: 5 pages, 4 figures. Presented at the 2005 ECOSS conference in Berlin, and at the 2005 Fall meeting of the MRS. Accepted for publication at Phys. Rev. Lett., after minor change
    • …
    corecore