The growth of magnesium on ruthenium has been studied by low-energy electron
microscopy (LEEM) and scanning tunneling microscopy (STM). In LEEM, a
layer-by-layer growth is observed except in the first monolayer, where the
completion of the first layer in inferred by a clear peak in electron
reflectivity. Desorption from the films is readily observable at 400 K.
Real-space STM and low-energy electron diffraction confirm that sub-monolayer
coverage presents a moir\'e pattern with a 1.2 nm periodicity, which evolves
with further Mg deposition by compressing the Mg layer to a 2.2 nm periodicity.
Layer-by-layer growth is followed in LEEM up to 10 ML. On films several ML
thick a substantial density of stacking faults are observed by dark-field
imaging on large terraces of the substrate, while screw dislocations appear in
the stepped areas. The latter are suggested to result from the mismatch in
heights of the Mg and Ru steps. Quantum size effect oscillations in the
reflected LEEM intensity are observed as a function of thickness, indicating an
abrupt Mg/Ru interface.Comment: 21 pages, 10 figure