289 research outputs found

    Thermoelectric Figure of Merit of Strongly Correlated Superlattice Semiconductors

    Full text link
    We solved the Anderson Lattice Hamiltonian to get the energy bands of a strongly correlated semiconductor by using slave boson mean field theory. The transport properties were calculated in the relaxation-time approximation,and the thermoelectric figure of merit was obtained for the strongly correlated semiconductor and its superlattice structures. We found that at room temperature ZTZT can reach nearly 2 for the quantum wire lattice structure.We believe that it is possible to find high values of thermoelectric figure of merit from strongly correlated semiconductor superlattice systems.Comment: 4 pages, 3 figure

    Bystander Effects of Hypoxia-Activated Prodrugs: Agent-Based Modeling Using Three Dimensional Cell Cultures

    Get PDF
    Intra-tumor heterogeneity represents a major barrier to anti-cancer therapies. One strategy to minimize this limitation relies on bystander effects via diffusion of cytotoxins from targeted cells. Hypoxia-activated prodrugs (HAPs) have the potential to exploit hypoxia in this way, but robust methods for measuring bystander effects are lacking. The objective of this study is to develop experimental models (monolayer, multilayer, and multicellular spheroid co-cultures) comprising ‘activator’ cells with high expression of prodrug-activating reductases and reductase-deficient ‘target’ cells, and to couple these with agent-based models (ABMs) that describe diffusion and reaction of prodrugs and their active metabolites, and killing probability for each cell. HCT116 cells were engineered as activators by overexpressing P450 oxidoreductase (POR) and as targets by knockout of POR, with fluorescent protein and antibiotic resistance markers to enable their quantitation in co-cultures. We investigated two HAPs with very different pharmacology: SN30000 is metabolized to DNA-breaking free radicals under hypoxia, while the dinitrobenzamide PR104A generates DNA-crosslinking nitrogen mustard metabolites. In anoxic spheroid co-cultures, increasing the proportion of activator cells decreased killing of both activators and targets by SN30000. An ABM parameterized by measuring SN30000 cytotoxicity in monolayers and diffusion-reaction in multilayers accurately predicted SN30000 activity in spheroids, demonstrating the lack of bystander effects and that rapid metabolic consumption of SN30000 inhibited prodrug penetration. In contrast, killing of targets by PR104A in anoxic spheroids was markedly increased by activators, demonstrating that a bystander effect more than compensates any penetration limitation. However, the ABM based on the well-studied hydroxylamine and amine metabolites of PR104A did not fit the cell survival data, indicating a need to reassess its cellular pharmacology. Characterization of extracellular metabolites of PR104A in anoxic cultures identified more stable, lipophilic, activated dichloro mustards with greater tissue diffusion distances. Including these metabolites explicitly in the ABM provided a good description of activator and target cell killing by PR104A in spheroids. This study represents the most direct demonstration of a hypoxic bystander effect for PR104A to date, and demonstrates the power of combining mathematical modeling of pharmacokinetics/pharmacodynamics with multicellular culture models to dissect bystander effects of targeted drug carriers

    Evaluation of YBa₂Cu₃O₇₋ₓ Bulk Superconductors for High Field Magnet Applications

    Get PDF
    Processing of YBCO single crystals was carried out by solidification of semi-liquid YBCO composition using a seeding technique. Microstructural characterization of the pinning centers was investigated by transmission electron microscopy. Characterization of single crystals was carried out, relating grain size and shape to the corresponding flux profiles. Current densities were calculated based on measured trapped fields. Once circulating currents were established, flux pumping and quenching experiments were conducted. These large single crystals will be incorporated into electromagnetic forming devices for use in the military and commercial aircraft manufacturing and service industries

    Restoring tumour selectivity of the bioreductive prodrug pr-104 by developing an analogue resistant to aerobic metabolism by human aldo-keto reductase 1c3

    Get PDF
    PR-104 is a phosphate ester pre-prodrug that is converted in vivo to its cognate alcohol, PR-104A, a latent alkylator which forms potent cytotoxins upon bioreduction. Hypoxia selectivity results from one-electron nitro reduction of PR-104A, in which cytochrome P450 oxidoreductase (POR) plays an important role. However, PR-104A also undergoes ‘off-target’ two-electron reduction by human aldo-keto reductase 1C3 (AKR1C3), resulting in activation in oxygenated tissues. AKR1C3 expression in human myeloid progenitor cells probably accounts for the dose-limiting myelotoxicity of PR-104 documented in clinical trials, resulting in human PR-104A plasma exposure levels 3.4- to 9.6-fold lower than can be achieved in murine models. Structure-based design to eliminate AKR1C3 activation thus represents a strategy for restoring the therapeutic window of this class of agent in humans. Here, we identified SN29176, a PR-104A analogue resistant to human AKR1C3 activation. SN29176 retains hypoxia selectivity in vitro with aerobic/hypoxic IC(50) ratios of 9 to 145, remains a substrate for POR and triggers γH2AX induction and cell cycle arrest in a comparable manner to PR-104A. SN35141, the soluble phosphate pre-prodrug of SN29176, exhibited superior hypoxic tumour log cell kill (>4.0) to PR-104 (2.5–3.7) in vivo at doses predicted to be achievable in humans. Orthologues of human AKR1C3 from mouse, rat and dog were incapable of reducing PR-104A, thus identifying an underlying cause for the discrepancy in PR-104 tolerance in pre-clinical models versus humans. In contrast, the macaque AKR1C3 gene orthologue was able to metabolise PR-104A, indicating that this species may be suitable for evaluating the toxicokinetics of PR-104 analogues for clinical development. We confirmed that SN29176 was not a substrate for AKR1C3 orthologues across all four pre-clinical species, demonstrating that this prodrug analogue class is suitable for further development. Based on these findings, a prodrug candidate was subsequently identified for clinical trials

    Exoplanet Diversity in the Era of Space-based Direct Imaging Missions

    Full text link
    This whitepaper discusses the diversity of exoplanets that could be detected by future observations, so that comparative exoplanetology can be performed in the upcoming era of large space-based flagship missions. The primary focus will be on characterizing Earth-like worlds around Sun-like stars. However, we will also be able to characterize companion planets in the system simultaneously. This will not only provide a contextual picture with regards to our Solar system, but also presents a unique opportunity to observe size dependent planetary atmospheres at different orbital distances. We propose a preliminary scheme based on chemical behavior of gases and condensates in a planet's atmosphere that classifies them with respect to planetary radius and incident stellar flux.Comment: A white paper submitted to the National Academy of Sciences Exoplanet Science Strateg

    Write-rationing garbage collection for hybrid memories

    Get PDF
    Emerging Non-Volatile Memory (NVM) technologies offer high capacity and energy efficiency compared to DRAM, but suffer from limited write endurance and longer latencies. Prior work seeks the best of both technologies by combining DRAM and NVM in hybrid memories to attain low latency, high capacity, energy efficiency, and durability. Coarse-grained hardware and OS optimizations then spread writes out (wear-leveling) and place highly mutated pages in DRAM to extend NVM lifetimes. Unfortunately even with these coarse-grained methods, popular Java applications exact impractical NVM lifetimes of 4 years or less. This paper shows how to make hybrid memories practical, without changing the programming model, by enhancing garbage collection in managed language runtimes. We find object write behaviors offer two opportunities: (1) 70% of writes occur to newly allocated objects, and (2) 2% of objects capture 81% of writes to mature objects. We introduce writerationing garbage collectors that exploit these fine-grained behaviors. They extend NVM lifetimes by placing highly mutated objects in DRAM and read-mostly objects in NVM. We implement two such systems. (1) Kingsguard-nursery places new allocation in DRAM and survivors in NVM, reducing NVM writes by 5x versus NVM only with wear-leveling. (2) Kingsguard-writers (KG-W) places nursery objects in DRAM and survivors in a DRAM observer space. It monitors all mature object writes and moves unwritten mature objects from DRAM to NVM. Because most mature objects are unwritten, KG-W exploits NVM capacity while increasing NVM lifetimes by 11x. It reduces the energy-delay product by 32% over DRAM-only and 29% over NVM-only. This work opens up new avenues for making hybrid memories practical

    Conversion of deoxynivalenol to 3-acetyldeoxynivalenol in barley-derived fuel ethanol co-products with yeast expressing trichothecene 3-O-acetyltransferases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The trichothecene mycotoxin deoxynivalenol (DON) may be concentrated in distillers dried grains with solubles (DDGS; a co-product of fuel ethanol fermentation) when grain containing DON is used to produce fuel ethanol. Even low levels of DON (≤ 5 ppm) in DDGS sold as feed pose a significant threat to the health of monogastric animals. New and improved strategies to reduce DON in DDGS need to be developed and implemented to address this problem. Enzymes known as trichothecene 3-<it>O-</it>acetyltransferases convert DON to 3-acetyldeoxynivalenol (3ADON), and may reduce its toxicity in plants and animals.</p> <p>Results</p> <p>Two <it>Fusarium </it>trichothecene 3-<it>O-</it>acetyltransferases (FgTRI101 and FfTRI201) were cloned and expressed in yeast (<it>Saccharomyces cerevisiae</it>) during a series of small-scale ethanol fermentations using barley (<it>Hordeum vulgare</it>). DON was concentrated 1.6 to 8.2 times in DDGS compared with the starting ground grain. During the fermentation process, FgTRI101 converted 9.2% to 55.3% of the DON to 3ADON, resulting in DDGS with reductions in DON and increases in 3ADON in the Virginia winter barley cultivars Eve, Thoroughbred and Price, and the experimental line VA06H-25. Analysis of barley mashes prepared from the barley line VA04B-125 showed that yeast expressing FfTRI201 were more effective at acetylating DON than those expressing FgTRI101; DON conversion for FfTRI201 ranged from 26.1% to 28.3%, whereas DON conversion for FgTRI101 ranged from 18.3% to 21.8% in VA04B-125 mashes. Ethanol yields were highest with the industrial yeast strain Ethanol Red<sup>®</sup>, which also consumed galactose when present in the mash.</p> <p>Conclusions</p> <p>This study demonstrates the potential of using yeast expressing a trichothecene 3-<it>O</it>-acetyltransferase to modify DON during commercial fuel ethanol fermentation.</p
    corecore