Increasing the Yield of Fuel Ethanol from Barley with β-Glucanases and β-Glucosidases

EASTERN REGIONAL RESEARCH CENTER

<u>Kevin B. Hicks</u>, David B. Johnston, and Arland T. Hotchkiss, Jr. ARS, USDA, Wyndmoor, PA 19038 khicks@arserrc.gov

Bioenergy I -Tomar

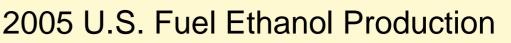
Summary of Presentation

- Why Consider Barley for Fuel Ethanol?
- Technical Problems with Barley as a Fuel Ethanol Feedstock
- How We are Using Enzymes to Solve these
 Problems

In 2005, 92 ethanol plants located in 20 states produced a record 3.9 billion gallons! R

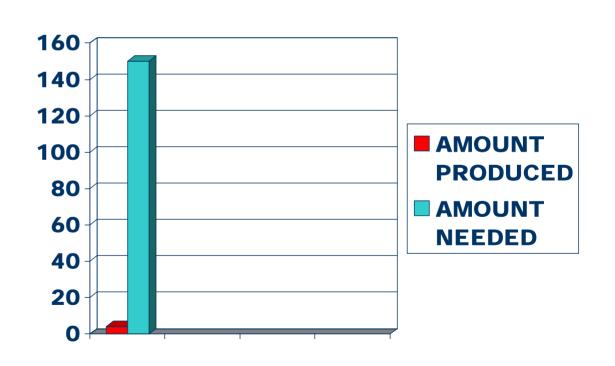
m

This used ~12% (>12 billion bushels) of the US corn supply!


1

Ethanol Production Facility

Under Construction


Source: Renewable Fuels Association, January 2005

U.S. Ethanol Production Facilities

DO WE HAVE ENOUGH CORN TO MAKE A SIGNIFICANT IMPACT IN OUR FUEL SUPPLY?

Last year we made ~4 billion gallons of ethanol from 12% of the U.S. corn supply. We need at least 150 billion gallons for automobile fuel!

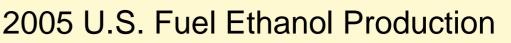
HOW CAN WE INCREASE PRODUCTION OF ETHANOL WITHOUT DEPLETING CORN SUPPLIES?

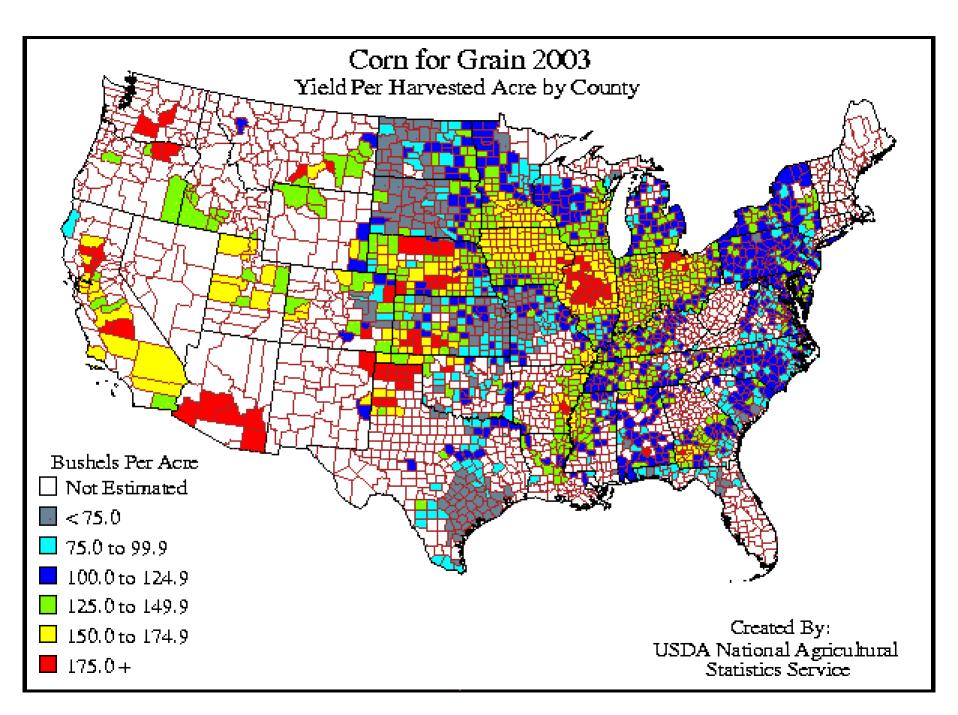
- USE BIOMASS?
- USE HYDROGEN?
- USE CANE OR BEET SUGAR? YES BUT NOT IN THE U.S. UNLESS PRICE SUPPORTS ARE CHANGED.
- OTHER GRAINS? BEST SHORT TERM SOLUTION TO THE PROBLEM AND A GREAT OPPORTUNITY FOR U.S. FARMERS.

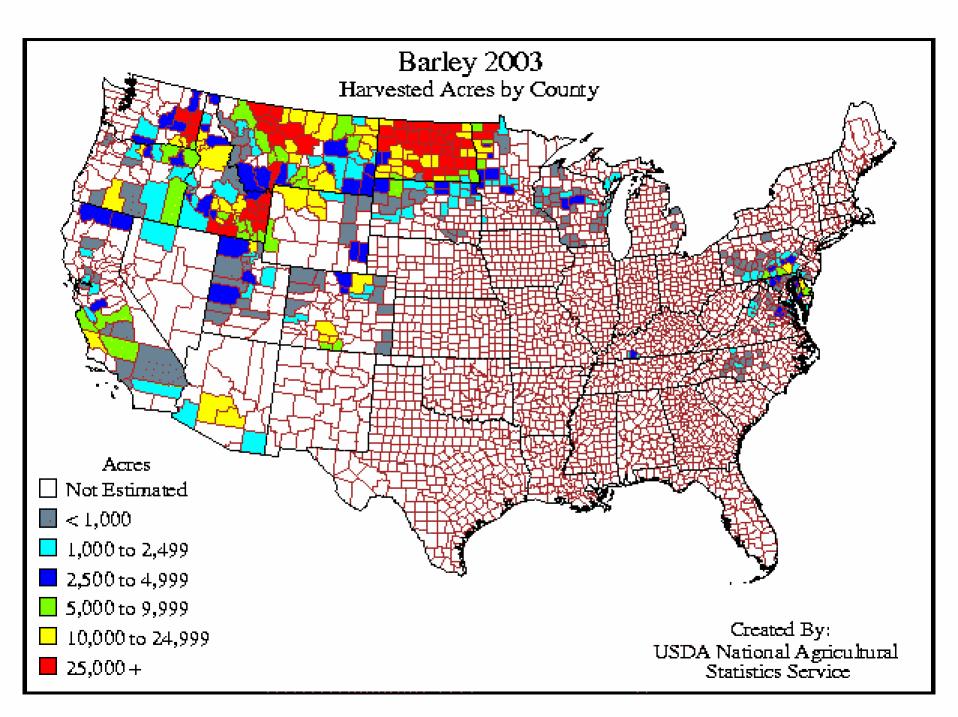
In 2005, 92 ethanol plants located in 20 states produced a record 3.9 billion gallons! R

m

This used ~12% (>12 billion bushels) of the US corn supply!

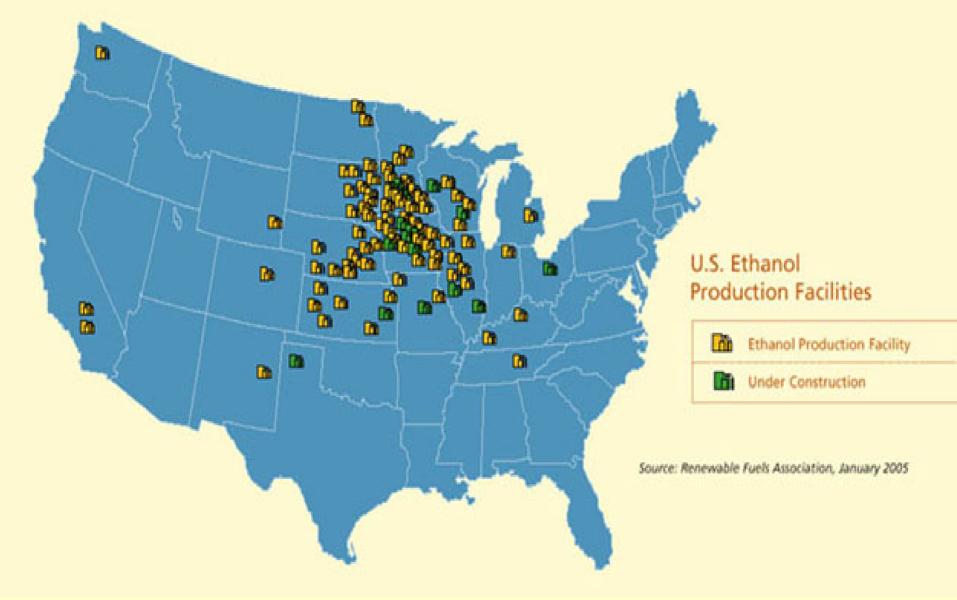

1


Ethanol Production Facility


Under Construction

Source: Renewable Fuels Association, January 2005

U.S. Ethanol Production Facilities



IS THERE ENOUGH BARLEY TO MAKE A SIGNIFICANT AMOUNT OF FUEL ETHANOL?

- U.S. Barley Production (All Types)
 - 5-8 Million Metric Tons = 0.2-0.4 Billion Bushels
- Canadian Barley Production (All Types)
 - ~14 million metric tons = 0.6 Billion Bushels
- Using 30-50% of Available Barley in the U.S. and Canada for Fuel Ethanol Could Yield an Additional 0.5-0.8 Billion Gallons of Ethanol.
- Significantly More Barley can Be Grown in the U.S. if Markets are there.
- Bottom Line: ~1 Billion Gallons of Ethanol from Barley

Number of U.S. Fuel Ethanol Plants that Use Barley as Feedstock = 0

Technical Issues with Barley as a Fuel Ethanol Feedstock

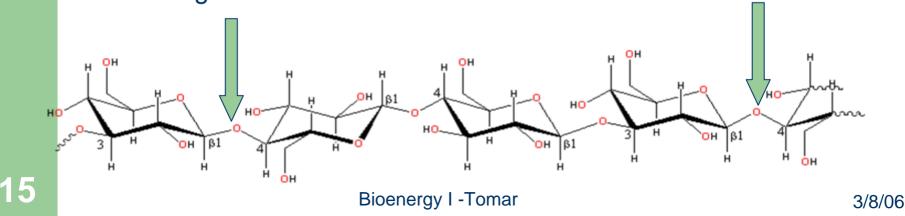
- Abrasive Hull
- Low Starch Content (50-55%) Compared to Corn's (72%)
- High Viscosity of Mash due to β -Glucans
- β-Glucans in DDGS Limit their Applications to Mainly Ruminants

Research Plan to Solve Barley Issue 1

• How to Deal with Abrasive Hull?

- Use Hulless Barley
- Use Pearling and/or Milling Processes to Remove Hull and Create High-Starch Fractions and Low-Starch Coproducts

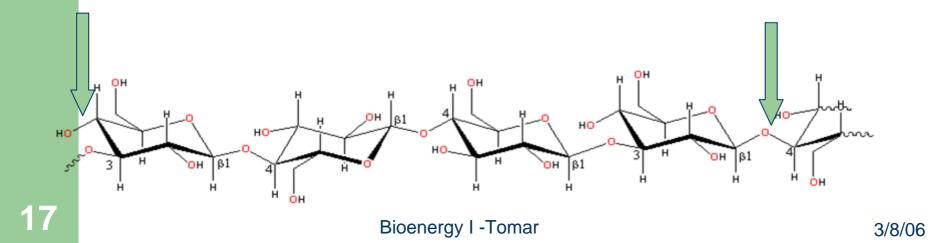
Barley Production at Virginia Tech



Performance of "Doyce"

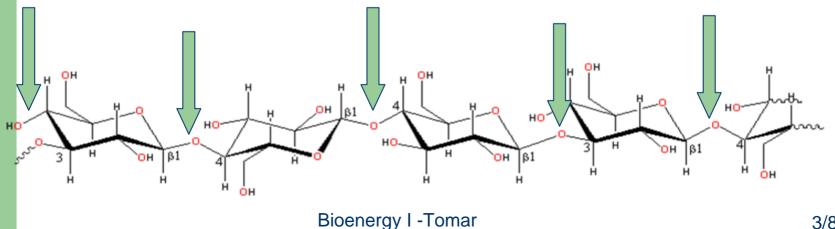
Doyce Sample	Starch	β- Glucan	Oil	Protein	Test Weight & Yield
2002/2003 Crop, 9 East Coast Locations	62.28 (2.03)	3.85 (0.09)	1.83 (0.04)	11.39 (0.80)	55.16 (1.98) ~85 bu/acre*
2003/2004, 15 East Coast Locations	65.58 (1.56)	4.67 (0.33)	2.06 (.09)	9.49 (0.83)	52.81 (2.63)

Research Plan to Solve Barley Issue 3


- How to Deal with High Viscosity of Mash due to β-Glucans
 - Fractional Milling May Be a Partial Solution by Removing β-Glucan-enriched Fractions Prior to Fermentation
 - Greatest Gains Will Be Made by Use of β-Glucanase Enzymes that Break down High-Viscosity β-Glucans to Low MWT Oligosaccharides

Commercially Available β-Glucanases Can Lower Viscosity of Barley Mashes

 Commercial Enzyme Preparations Contain Mixtures of Enzymes that Can Partially Degrade Viscous High Molecular Weight β-Glucans, Producing Low Viscosity Oligosaccharides in the Process.



Are there Commercially Available β -Glucanases that can Completely Hydrolyze β -Glucan to Glucose?

- What Would be the Benefits?
 - Major Reduction of Viscosity

18

 Additional Glucose Produced Would Be Fermented to Ethanol, <u>Increasing Yields</u>

Benefits of Complete Hydrolysis of β-Glucans

- Even Greater Reduction of Mash Viscosity
- Elimination of β-Glucan in DDGS (Increasing Value)
- Increase in Ethanol Yields:
 - Barley with 65% Starch and 5% β-Glucan would be Equivalent to Grain having 70% Starch!

Next Steps for β**-Glucanase Studies**

Bioenergy I -Tomar

β-Glucanase Studies – Model System

- Commercial Enzymes Evaluated
 - Alltech: <u>Allglucanase</u>, Heat Stable β-Glucanase from *Trichoderma Longibrachiatum and* <u>Rhyzozyme</u>, from *Rhizopus* sp.
 - GNC Bioferm: <u>Endo Feed</u>, Feed Enzyme from Aspergillus sp.
 - Novozyme: <u>Viscozyme L</u>, Multi-Enzyme Mixture from *Aspergillus* sp. (Obtained from Sigma)
 - Genencor: GC 220, GC 440 and GC 880,
 Developmental "Cellulases" from *Trichoderma*

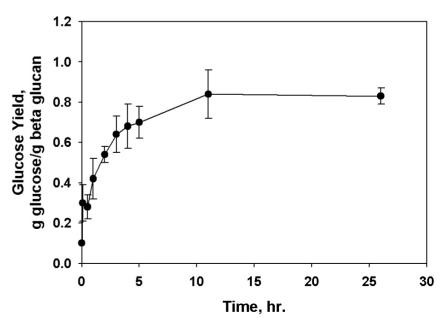
β-Glucanase Studies: Model System

• Method of Evaluation of Commercial Enzymes

- Reacted Aqueous Solutions (1% w/w) of Soluble Barley β-Glucan with Commercial Enzymes using pH and Temperature as Recommend by the Manufacturer
- Used Excess of Enzymes
- Measured the Levels of Oligosaccharides (HPAEC-PAD) and Glucose (YSI Glucose Analyzer) Produced Over Time

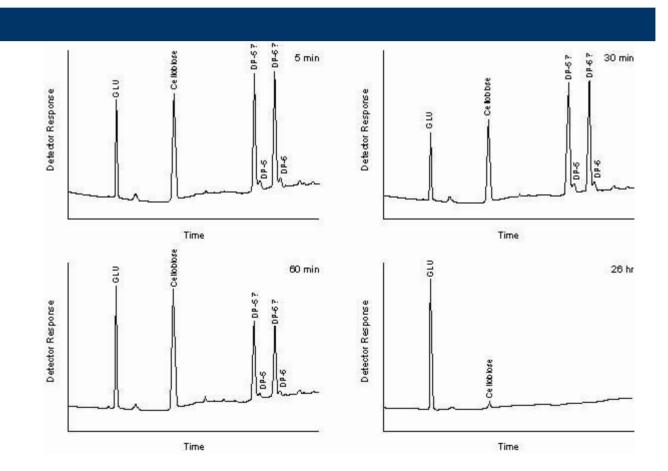
β-Glucanase Studies: Model System

Enzyme	Temperature ⁰ C	рН	Dosage g./g.βG
Endo-Feed	45	5	0.193
Multifect-B	45	5	0.73
Viscozyme L	45	5	0.71
GC 220	45	5	0.34
GC 440	55	5	0.35
GC 880	55	5	0.35
Rhizozyme	50	5	0.12
Allglucanase	80	5	0.32

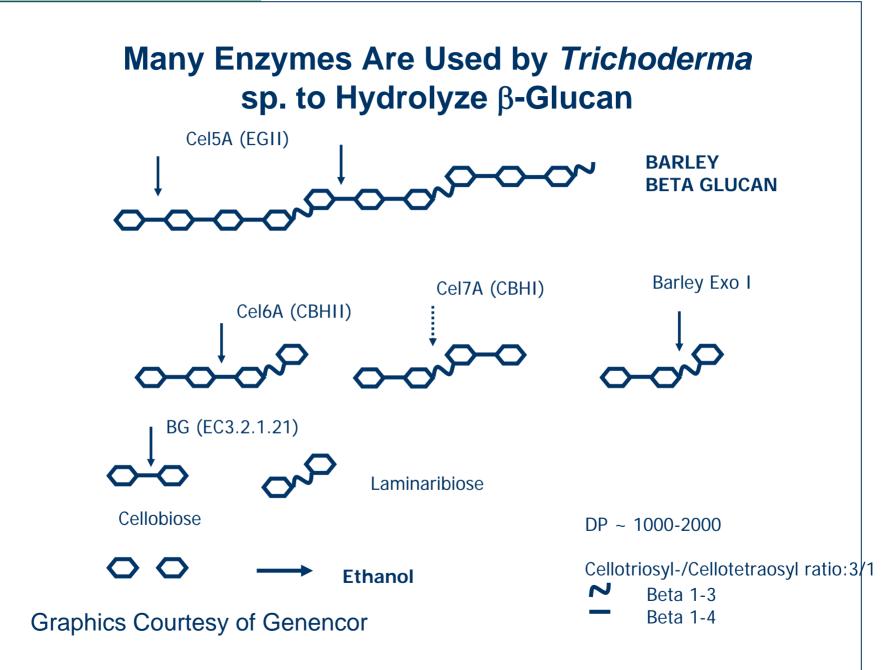

β-Glucanase Studies: Model System -Results (1 hr reaction time)

Enzyme	Glucose Yield g glu/g βG (Mean Value + error)
Endo-Feed	0.03 + .009
Multifect-B	0.05 + .058
Viscozyme L	0.06 + .022
GC 220	0.24 + .091
GC 440	0.28 + .045
GC 880	0.40 + .082
Rhizozyme	0.05 + .053
Allglucanase	0.06 + .030

β-Glucanase Studies: Model System - Results

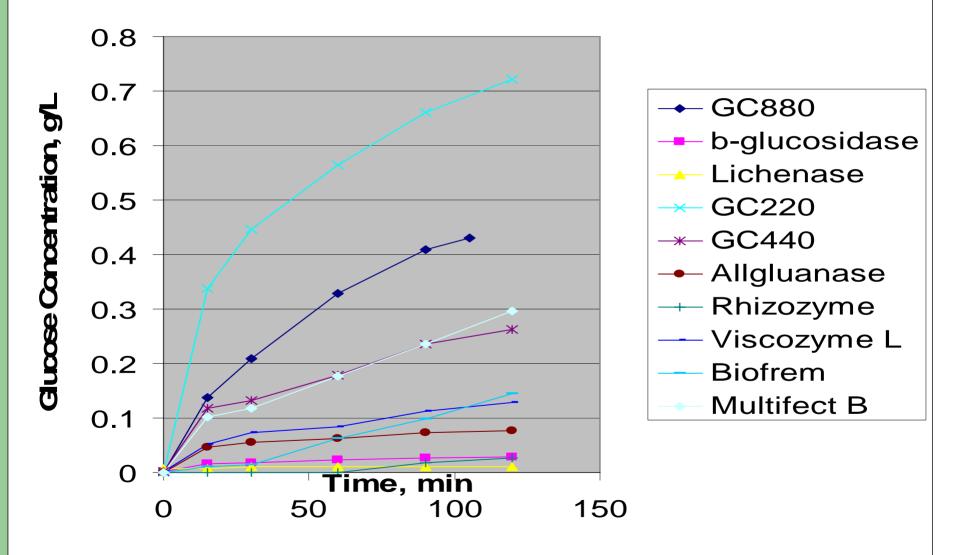

- All Enzymes Dramatically Reduced Viscosity
- Several Enzymes Led to Production of Measurable Levels of Glucose
- Numerous Fermentations were Conducted but Increased Levels of Ethanol Were Not Statistically Significant.

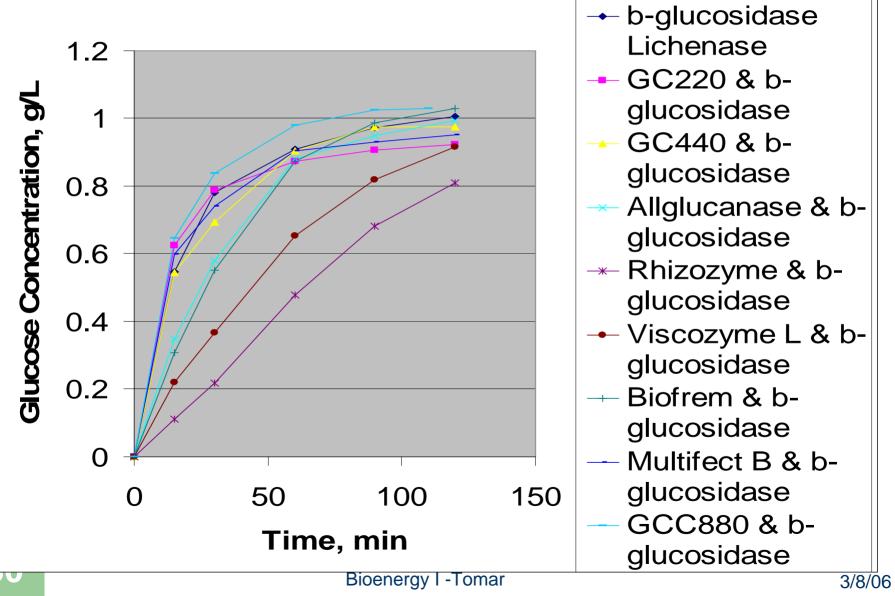
Production of Glucose from β -Glucan by GC 880



3/8/06

β-Glucanase Studies: Model System - HPAEC Results


Bioenergy I-Tomar


Can We Find the Missing Enzymes?

YES!

Conversion of Beta-Glucan using Single Enzyme

Conversion of Beta-Glucan to Glucose using Enzymes + β-G

Conclusions for β-**Glucanase Studies**

- We Have Determined the Missing Components of Commercial β-Glucanases
- Addition of β-Glucosidase to Even the Cheapest β-Glucanases Should be able to Convert all β-Glucan to Glucose and During Fermentations,
 - Increase Ethanol Yield
 - Remove All Beta-Glucans from DDGS

Summary of Fermentation Studies Without Beta-Glucanases

- Doyce Hulless Barley and a Typical Hulled Barley Appeared to Ferment at Approximately Similar Rates
- Doyce Barley Produced Higher Ethanol Yields
 - (2.27 versus 1.64 gal/bushel)
- Doyce Produced Less DDGS, but the Composition was Higher in Protein (More Valuable) than Hulled Barley DDGS
 - ~30% versus ~23% Protein
- Without use of β-Glucanases, both Doyce and Hulless Barley DDGS Contained Significant Levels of β-Glucans
 - ~7-8% Beta Glucans in DDGS Bioenergy I -Tomar

Next Steps for β -Glucanase Studies

- Conduct Fermentation Experiments to Validate Viscosity Decrease, Ethanol Yield Increase and Lack of β-Glucans in DDGS, and Other Process Requirements
- Determine Economic Feasibility by Building a 40 MGY Barley Ethanol Plant SuperPro[™] Model
- Transfer the Technology to Users

Acknowledgements

- Alltech
- Genencor
- GNC Bioferm
- ERRC Staff
 - Karen Kohout
 - Jennifer Thomas
 - Robyn Moten
 - Jerry Senske

