34 research outputs found
Improved W boson mass measurement with the D0 detector
We have measured the W boson mass using the D0 detector and a data sample of
82 pb^-1 from the Tevatron collider. This measurement used W -> e nu decays,
where the electron is close to a boundary of a central electromagnetic
calorimeter module. Such 'edge' electrons have not been used in any previous D0
analysis, and represent a 14% increase in the W boson sample size. For these
electrons, new response and resolution parameters are determined, and revised
backgrounds and underlying event energy flow measurements are made. When the
current measurement is combined with previous D0 W boson mass measurements, we
obtain M_W = 80.483 +/- 0.084 GeV. The 8% improvement from the previous D0
measurement is primarily due to the improved determination of the response
parameters for non-edge electrons using the sample of Z bosons with non-edge
and edge electrons.Comment: submitted to Phys. Rev. D; 20 pages, 18 figures, 9 table
Ultra-High Gradient Channeling Acceleration in Nanostructures: Design/Progress of Proof-of-Concept (POC) Experiments
International audienceA short bunch of relativistic particles or a short-pulse laser perturbs the density state of conduction electrons in a solid crystal and excites wakefields along atomic lattices in a crystal. Under a coupling condition the wakes, if excited, can accelerate channeling particles with TeV/m acceleration gradients [1] in principle since the density of charge carriers (conduction electrons) in solids n0 = ~ 10 to the power of 20 – 10 to the power of 23 cm-3 is significantly higher than what was considered above in gaseous plasma. Nanostructures have some advantages over crystals for channeling applications of high power beams. The dechanneling rate can be reduced and the beam acceptance increased by the large size of the channels. For beam driven acceleration, a bunch length with a sufficient charge density would need to be in the range of the plasma wavelength to properly excite plasma wakefields, and channeled particle acceleration with the wakefields must occur before the ions in the lattices move beyond the restoring threshold. In the case of the excitation by short laser pulses, the dephasing length is appreciably increased with the larger channel, which enables channeled particles to gain sufficient amounts of energy. This paper describes simulation analyses on beam- and laser (X-ray)-driven accelerations in effective nanotube models obtained from Vsim and EPOCH codes. Experimental setups to detect wakefields are also outlined with accelerator facilities at Fermilab and NIU. In the FAST facility, the electron beamline was successfully commissioned at 50 MeV and it is being upgraded toward higher energies for electron accelerator R&D. The 50 MeV injector beamline of the facility is used for X-ray crystal-channeling radiation with a diamond target. It has been proposed to utilize the same diamond crystal for a channeling acceleration POC test. Another POC experiment is also designed for the NIU accelerator lab with time-resolved electron diffraction. Recently, a stable generation of single-cycle laser pulses with tens of Petawatt power based on thin film compression (TFC) technique has been investigated for target normal sheath acceleration (TNSA) and radiation pressure acceleration (RPA). The experimental plan with a nanometer foil is discussed with an available test facility such as Extreme Light Infrastructure – Nuclear Physics (ELI-NP)
Kinematic Evidence For Top-quark Pair Production In W Plus Multijet Events In P(p)over-bar Collisions At Root-s=1.8 Tev
We present a study of W+multijet events that compares the kinematics of the observed events with expectations from direct QCD W+jet production and from production and decay of top quark pairs. The data were collected in the 1992-93 run with the Collider Detector at Fermilab (CDF) from 19.3 pb-1 of proton-antiproton collisions at s =1.8 TeV. A W+2 jet sample and a W+3 jet sample are selected with the requirement that at least the two or three jets have energy transverse with respect to the beam axis in excess of 20 GeV. The jet energy distributions for the W+2 jet sample agree well with the predictions of direct QCD W production. From the W+3 jet events, a "signal sample" with an improved ratio of tt̄ to QCD produced W events is selected by requiring each jet to be emitted centrally in the event center of mass frame. This sample contains 14 events with unusually hard jet ET distributions not well described by expectations for jets from direct QCD W production and other background processes. Using expected jet ET distributions, a relative likelihood is defined and used to determine if an event is more consistent with the decay of tt̄ pairs, with Mtop=170 GeV/c2, than with direct QCD W production. Eight of the 14 signal sample events are found to be more consistent with top-quark than direct QCD W production, while only 1.7 such top-quark-like events are expected in the absence of tt̄. The probability that the observation is due to an upward fluctuation of the number of background events is found to be 0.8%. The robustness of the result was tested by varying the cuts defining the signal sample, and the largest probability for such a fluctuation found was 1.9%. Good agreement in the jet spectra is obtained if jet production from tt̄ pair decays is included. For those events kinematically more consistent with tt̄ we find evidence for a b-quark content in their jets to the extent expected from top quark decay, and larger than expected for background processes. For events with four or more jets, the discrepancy with the predicted jet distributions from direct QCD W production, and the associated excess of b-quark content, is more pronounced. © 1995 The American Physical Societ
Properties of jets in Z boson events from 1.8 TeV p\u304p collisions
We present a study of events with Z bosons and hadronic jets produced in p\uafp collisions at a center-of-mass energy of 1.8 TeV. The data consist of 6708 Z\u2192e+e 12 decays from 106pb 121 of integrated luminosity collected using the CDF detector at the Fermilab Tevatron Collider. The Z+ 65n jet cross sections and jet production properties have been measured for n=1 to 4. The data are compared to predictions of leading-order QCD matrix element calculations with added gluon radiation and simulated parton fragmentation
Inclusive jet cross section in p\u304p collisions at 1as = 1.8 TeV
The inclusive jet differential cross section has been measured for jet transverse energies, ET, from 15 to 440 GeV, in the pseudorapidity region 0.1 64|\u3b7| 640.7. The results are based on 19.5pb 121 of data collected by the CDF Collaboration at the Fermilab Tevatron collider. The data are compared with QCD predictions for various sets of parton distribution functions. The cross section for jets with ET>200GeV is significantly higher than current predictions based on O(\u3b13s) perturbative QCD calculations. Various possible explanations for the high- ET excess are discussed
Measurement of the \u3b3 + D*\ub1 cross section in p\u304p collisions at 1as = 1.8 TeV
We have measured the cross section of gamma + D-*+/- production in <(p)over bar p> collisions at root s = 1.8 TeV using the Collider Detector at Fermilab. In this kinematic region, the Compton scattering process (g(c) --> gamma(c)) is expected to dominate and thus provide a direct link to the charm quark density in the proton. From the 45 +/- 18 gamma + D-*+/- candidates in a 16.4 pb(-1) data sample, we have determined the production cross section to be 0.38 +/- 0.15(stat) +/- 0.11(syst) nb for the rapidity range y(D-*+/-) < 1.2 and y(gamma) < 0.9, and for the transverse momentum range p(T)(D-*+/-) > 6 GeV/c and 16 < p(T)(gamma) < 40 GeV/c. The measured cross section is compared to a theoretical prediction
Search for the supersymmetric partner of the top quark in pp\u304 collisions at 1as=1.8 TeV
We report on a search for the supersymmetric partner of the top quark (top squark) produced in tt\u304 events using 110 pb-1 of pp\u304 collisions at 1as = 1.8 TeV recorded with the Collider Detector at Fermilab. In the case of a light top squark, the decay of the top quark into a top squark plus the lightest supersymmetric particle (LSP) could have a significant branching ratio. The observed events are consistent with standard model tt\u304 production and decay. Hence, we set limits on the branching ratio of the top quark decaying into a top squark plus LSP, excluding branching ratios above 45% for a LSP mass up to 40 GeV/c2
Central pseudorapidity gaps in events with a leading antiproton at the Fermilab tevatron pp collider
The results from a similar measurement performed in a subsample of pp events containing a leading (high longitudinal momentum) antiproton. As such, large pseudorapidity gaps are presumed to be due to Pomeron exchanges and are the signature for diffraction. The process with a leading beam particle in the final state, which is kinematically associated with an adjacent pseudorapidity gap, is known as single diffraction dissociation (SD), while that with a central gap as double diffraction dissociation (DD)