12 research outputs found

    Initial insight into the function of the lysosomal 66.3 kDa protein from mouse by means of X-ray crystallography

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The lysosomal 66.3 kDa protein from mouse is a soluble, mannose 6-phosphate containing protein of so far unknown function. It is synthesized as a glycosylated 75 kDa precursor that undergoes limited proteolysis leading to a 28 kDa N- and a 40 kDa C-terminal fragment.</p> <p>Results</p> <p>In order to gain insight into the function and the post-translational maturation process of the glycosylated 66.3 kDa protein, three crystal structures were determined that represent different maturation states. These structures demonstrate that the 28 kDa and 40 kDa fragment which have been derived by a proteolytic cleavage remain associated. Mass spectrometric analysis confirmed the subsequent trimming of the C-terminus of the 28 kDa fragment making a large pocket accessible, at the bottom of which the putative active site is located. The crystal structures reveal a significant similarity of the 66.3 kDa protein to several bacterial hydrolases. The core αββα sandwich fold and a cysteine residue at the N-terminus of the 40 kDa fragment (C249) classify the 66.3 kDa protein as a member of the structurally defined N-terminal nucleophile (Ntn) hydrolase superfamily.</p> <p>Conclusion</p> <p>Due to the close resemblance of the 66.3 kDa protein to members of the Ntn hydrolase superfamily a hydrolytic activity on substrates containing a non-peptide amide bond seems reasonable. The structural homology which comprises both the overall fold and essential active site residues also implies an autocatalytic maturation process of the lysosomal 66.3 kDa protein. Upon the proteolytic cleavage between S248 and C249, a deep pocket becomes solvent accessible, which harbors the putative active site of the 66.3 kDa protein.</p

    Precise variant interpretation, phenotype ascertainment, and genotype-phenotype correlation of children in the EARLY PRO-TECT Alport trial

    No full text
    Early initiation of therapy in patients with Alport syndrome (AS) slows down renal failure by many years. Genotype-phenotype correlations propose that the location and character of the individual's variant correlate with the renal outcome and any extra renal manifestations. In-depth clinical and genetic data of 60/62 children who participated in the EARLY PRO-TECT Alport trial were analyzed. Genetic variants were interpreted according to current guidelines and criteria. Genetically solved patients with X-linked inheritance were then classified according to the severity of their COL4A5 variant into less-severe, intermediate, and severe groups and disease progress was compared. Almost 90% of patients were found to carry (likely) pathogenic variants and classified as genetically solved cases. Patients in the less-severe group demonstrated a borderline significant difference in disease progress compared to those in the severe group (p = 0.05). While having only limited power according to its sample size, an obvious strength is the precise clinical and genetic data of this well ascertained cohort. As in published data differences in clinical progress were shown between patients with COL4A5 less-severe and severe variants. Therefore, clinical and segregational data are important for variant (re)classification. Genetic testing should be mandatory allowing early diagnosis and therapy of AS

    Drug screening identifies tazarotene and bexarotene as therapeutic agents in multiple sulfatase deficiency

    No full text
    Schlotawa L, Tyka K, Kettwig M, et al. Drug screening identifies tazarotene and bexarotene as therapeutic agents in multiple sulfatase deficiency. EMBO Molecular Medicine. 2023: e14837.Multiple sulfatase deficiency (MSD, MIM #272200) results from pathogenic variants in the SUMF1 gene that impair proper function of the formylglycine-generating enzyme (FGE). FGE is essential for the posttranslational activation of cellular sulfatases. MSD patients display reduced or absent sulfatase activities and, as a result, clinical signs of single sulfatase disorders in a unique combination. Up to date therapeutic options for MSD are limited and mostly palliative. We performed a screen of FDA-approved drugs using immortalized MSD patient fibroblasts. Recovery of arylsulfatase A activity served as the primary readout. Subsequent analysis confirmed that treatment of primary MSD fibroblasts with tazarotene and bexarotene, two retinoids, led to a correction of MSD pathophysiology. Upon treatment, sulfatase activities increased in a dose- and time-dependent manner, reduced glycosaminoglycan content decreased and lysosomal position and size normalized. Treatment of MSD patient derived induced pluripotent stem cells (iPSC) differentiated into neuronal progenitor cells (NPC) resulted in a positive treatment response. Tazarotene and bexarotene act to ultimately increase the stability of FGE variants. The results lay the basis for future research on the development of a first therapeutic option for MSD patients. © 2023 The Authors. Published under the terms of the CC BY 4.0 license
    corecore