743 research outputs found

    Universality of Highly Damped Quasinormal Modes for Single Horizon Black Holes

    Full text link
    It has been suggested that the highly damped quasinormal modes of black holes provide information about the microscopic quantum gravitational states underlying black hole entropy. This interpretation requires the form of the highly damped quasinormal mode frequency to be universally of the form: ωR=ln(l)kTBH\hbar\omega_R = \ln(l)kT_{BH}, where ll is an integer, and TBHT_{BH} is the black hole temperature. We summarize the results of an analysis of the highly damped quasinormal modes for a large class of single horizon, asymptotically flat black holes.Comment: 9 pages, 1 figure, submitted to the proceedings of Theory CANADA 1, which will be published in a special edition of the Canadian Journal of Physic

    A dynamical, confining model and hot quark stars

    Get PDF
    We explore the consequences of an equation of state (EOS) obtained in a confining Dyson-Schwinger equation model of QCD for the structure and stability of nonstrange quark stars at finite-T, and compare the results with those obtained using a bag-model EOS. Both models support a temperature profile that varies over the star's volume and the consequences of this are model independent. However, in our model the analogue of the bag pressure is (T,mu)-dependent, which is not the case in the bag model. This is a significant qualitative difference and comparing the results effects a primary goal of elucidating the sensitivity of quark star properties to the form of the EOS.Comment: 13 pages, 5 figures, epsfig.sty, elsart.sty. Shortened version to appear in Phys. Lett. B, qualitatively unmodifie

    Fast, inexpensive, and reliable HPLC method to determine monomer fractions in poly(3-hydroxybutyrate-co-3-hydroxyvalerate)

    Get PDF
    The determination of the monomer fractions in polyhydroxyalkanoates is of great importance for research on microbial-produced plastic material. The development of new process designs, the validation of mathematical models, and intelligent control strategies for production depend enormously on the correctness of the analyzed monomer fractions. Most of the available detection methods focus on the determination of the monomer fractions of the homopolymer poly(3-hydroxybutyrate). Only a few can analyze the monomer content in copolymers such as poly(3-hydroxybutyrate-co-3-hydroxyvalerate), which usually require expensive measuring devices, a high preparation time or the use of environmentally harmful halogenated solvents such as chloroform or dichloromethane. This work presents a fast, simple, and inexpensive method for the analysis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with high-performance liquid chromatography. Samples from a bioreactor experiment for the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with Cupriavidus necator H16 were examined regarding their monomer content using the new method and gas chromatography analysis, one of the most frequently used methods in literature. The results from our new method were validated using gas chromatography measurements and show excellent agreement. Key points ∙ The presented HPLC method is an inexpensive, fast and environmentally friendly alternative to existing methods for quantification of monomeric composition of PHBV. ∙ Validation with state of the art GC measurement exhibits excellent agreement over a broad range of PHBV monomer fractions

    Flip Graphs of Degree-Bounded (Pseudo-)Triangulations

    Full text link
    We study flip graphs of triangulations whose maximum vertex degree is bounded by a constant kk. In particular, we consider triangulations of sets of nn points in convex position in the plane and prove that their flip graph is connected if and only if k>6k > 6; the diameter of the flip graph is O(n2)O(n^2). We also show that, for general point sets, flip graphs of pointed pseudo-triangulations can be disconnected for k9k \leq 9, and flip graphs of triangulations can be disconnected for any kk. Additionally, we consider a relaxed version of the original problem. We allow the violation of the degree bound kk by a small constant. Any two triangulations with maximum degree at most kk of a convex point set are connected in the flip graph by a path of length O(nlogn)O(n \log n), where every intermediate triangulation has maximum degree at most k+4k+4.Comment: 13 pages, 12 figures, acknowledgments update

    The Mystery of the Asymptotic Quasinormal Modes of Gauss-Bonnet Black Holes

    Get PDF
    We analyze the quasinormal modes of DD-dimensional Schwarzschild black holes with the Gauss-Bonnet correction in the large damping limit and show that standard analytic techniques cannot be applied in a straightforward manner to the case of infinite damping. However, by using a combination of analytic and numeric techniques we are able to calculate the quasinormal mode frequencies in a range where the damping is large but finite. We show that for this damping region the famous ln(3)\ln(3) appears in the real part of the quasinormal mode frequency. In our calculations, the Gauss-Bonnet coupling, α\alpha, is taken to be much smaller than the parameter μ\mu, which is related to the black hole mass.Comment: 12 pages and 5 figure

    IL-6 as a Biomarker for Therapeutic Resistance in Metastatic HR+, HER2- Breast Cancers

    Get PDF
    https://openworks.mdanderson.org/sumexp21/1184/thumbnail.jp
    corecore