17 research outputs found

    Involvement of the human frontal eye field and multiple parietal areas in covert visual selection during conjunction search

    No full text
    Searching for a target object in a cluttered visual scene requires active visual attention if the target differs from distractors not by elementary visual features but rather by a feature conjunction. We used functional magnetic resonance imaging (fMRI) in human subjects to investigate the functional neuroanatomy of attentional mechanisms employed during conjunction search. In the experimental condition, subjects searched for a target defined by a conjunction of colour and orientation. In the baseline condition, subjects searched for a uniquely coloured target, regardless of its orientation. Eye movement recordings outside the scanner verified subjects' ability to maintain fixation during search. Reaction times indicated that the experimental condition was attentionally more demanding than the baseline condition. Differential activations between conditions were therefore ascribed to top‐down modulation of neural activity. The frontal eye field, the ventral precentral sulcus and the following posterior parietal regions were consistently activated: (i) the postcentral sulcus; (ii) the posterior; and (iii) the anterior part of the intraparietal sulcus; and (iv) the junction of the intraparietal with the transverse occipital sulcus. Parietal regions were spatially distinct and displayed differential amplitudes of signal increase with a maximal amplitude in the posterior intraparietal sulcus. Less consistent activation was found in the lateral fusiform gyrus. These results suggest an involvement of the human frontal eye field in covert visual selection of potential targets during search. These results also provide evidence for a subdivision of posterior parietal cortex in multiple areas participating in covert visual selection, with a major contribution of the posterior intraparietal sulcus

    3D Discrete Fracture Network (DFN) models of damage zone fluid corridors within a reservoir-scale normal fault in carbonates: Multiscale approach using field data and UAV imagery

    No full text
    We combined structural data collected in the field and those obtained from a virtual outcrop model constructed from drone imagery, to perform Discrete Fracture Network (DFN) modelling and to characterize the fracture distribution within the damage zone of the low-displacement (~50 m) carbonate-hosted Pietrasecca Fault (PF) (central Apennines, Italy). Both in the hanging wall and in the footwall damage zones, fractures are vertical and parallel to slightly oblique to the fault strike. Fracture length distributions in the footwall damage zone indicate a high degree of fracture maturity, while in the hanging wall damage zone they indicate a low degree of fracture maturity. Pervasive stylolitization in the hanging wall must have hindered the development of through-going fractures, favoring diffuse fracturing characterized by stylolite-bounded fractures. DFN models suggest that permeabilities are 1–2 orders of magnitude greater in the footwall damage zone than in the hanging wall damage zone. As permeability (10−12 to 10−15 m2) is comparable with those measured in large-displacement (up to 600 m) faults in carbonates, our results show that also damage zones accompanying carbonate faults with ~50 m of displacement could be fracture corridors for efficient fluid flow within subsurface reservoirs. Therefore, we propose that jumps in subsurface permeabilities occurring in many carbonate fractured reservoirs could be associated with to the occurrence of high permeability fracture zones developed within damage zones of low-displacement faults. As the recent advancement in seismic imaging allow the recognition of faults with displacement in the order of a few tens of meters, reservoir geologists and engineers can apply results of this study to better model the subsurface flow pathways near low displacement faults in carbonate reservoirs

    Brittle Deformation of Carbonated Peridotite\u2014Insights From Listvenites of the Samail Ophiolite (Oman Drilling Project Hole BT1B)

    No full text
    Hole BT1B of the Oman Drilling Project provides a continuous sampling from listvenite into the metamorphic sole that preserves the deformation, hydration, and carbonation processes of oceanic mantle peridotite at the base of the Samail ophiolite, Oman. We present evidence of multistage brittle deformation in listvenites and serpentinites based on field observations, visual core logging and petrography. About 10 vol% of listvenite and serpentinite in Hole BT1B is composed of cataclasite bands. Cataclasites contain lithic clasts of listvenite with spheroidal, zoned magnesite and quartz, and fragments of chalcedony-carbonate veins that elsewhere crosscut listvenite\u2014showing that cataclasis postdates listvenite formation. Locally the cataclasites are reworked and cut by thin, sharp faults, pointing to repeated reactivation of brittle structures. SEM-EDS mapping shows that cataclasis was related to dissolution of carbonate and/or silica cementation. Dolomite veins crosscut cataclasites and breccias, suggesting that part of the Ca gain in BT1B is related to late fluids after listvenite formation. These results indicate a multistage tectonic overprint after peridotite carbonation and listvenite formation, which may be related to the tectonic history of the deformed continental margin under the ophiolite. These relatively late brittle structures should be excluded when trying to understand the carbonation of peridotite to listvenite

    Developmental Control And Plasticity Of Fruit And Seed Dimorphism In Aethionema Arabicum

    No full text
    Understanding how plants cope with changing habitats is a timely and important topic in plant research. Phenotypic plasticity describes the capability of a genotype to produce different phenotypes when exposed to different environmental conditions. In contrast, the constant production of a set of distinct phenotypes by one genotype mediates bet hedging, a strategy that reduces the temporal variance in fitness at the expense of a lowered arithmetic mean fitness. Both phenomena are thought to represent important adaptation strategies to unstable environments. However, little is known about the underlying mechanisms of these phenomena, partly due to the lack of suitable model systems. We used phylogenetic and comparative analyses of fruit and seed anatomy, biomechanics, physiology, and environmental responses to study fruit and seed heteromorphism, a typical morphological basis of a bet-hedging strategy of plants, in the annual Brassicaceae species Aethionema arabicum. Our results indicate that heteromorphism evolved twice within the Aethionemeae, including once for themonophyletic annual Aethionema clade. The dimorphism of Ae. arabicum is associated with several anatomic, biomechanical, gene expression, and physiological differences between the fruit and seed morphs. However, fruit ratios and numbers change in response to different environmental conditions. Therefore, the life-history strategy of Ae. arabicum appears to be a blend of bet hedging and plasticity. Together with the available genomic resources, our results pave the way to use this species in future studies intended to unravel the molecular control of heteromorphism and plasticity.WoSScopu

    Developmental Control and Plasticity of Fruit and Seed Dimorphism in Aethionema arabicum

    No full text
    Understanding how plants cope with changing habitats is a timely and important topic in plant research. Phenotypic plasticity describes the capability of a genotype to produce different phenotypes when exposed to different environmental conditions. In contrast, the constant production of a set of distinct phenotypes by one genotype mediates bet hedging, a strategy that reduces the temporal variance in fitness at the expense of a lowered arithmetic mean fitness. Both phenomena are thought to represent important adaptation strategies to unstable environments. However, little is known about the underlying mechanisms of these phenomena, partly due to the lack of suitable model systems. We used phylogenetic and comparative analyses of fruit and seed anatomy, biomechanics, physiology, and environmental responses to study fruit and seed heteromorphism, a typical morphological basis of a bet-hedging strategy of plants, in the annual Brassicaceae species Aethionema arabicum. Our results indicate that heteromorphism evolved twice within the Aethionemeae, including once for themonophyletic annual Aethionema clade. The dimorphism of Ae. arabicum is associated with several anatomic, biomechanical, gene expression, and physiological differences between the fruit and seed morphs. However, fruit ratios and numbers change in response to different environmental conditions. Therefore, the life-history strategy of Ae. arabicum appears to be a blend of bet hedging and plasticity. Together with the available genomic resources, our results pave the way to use this species in future studies intended to unravel the molecular control of heteromorphism and plasticity
    corecore