230 research outputs found

    High Resolution CO Observations of Massive Star Forming Regions

    Full text link
    Context. To further understand the processes involved in the formation of massive stars, we have undertaken a study of the gas dynamics surrounding three massive star forming regions. By observing the large scale structures at high resolution, we are able to determine properties such as driving source, and spatially resolve the bulk dynamical properties of the gas such as infall and outflow. Aims. With high resolution observations, we are able to determine which of the cores in a cluster forming massive stars is responsible for the large scale structures. Methods. We present CO observations of three massive star forming regions with known HII regions and show how the CO traces both infall and outflow. By combining data taken in two SMA configurations with JCMT observations, we are able to see large scale structures at high resolution. Results. We find large (0.26-0.40 pc), massive (2-3 M_sun) and energetic (13-17 \times 10^44 erg) outflows emanating from the edges of two HII regions suggesting they are being powered by the protostar(s) within. We find infall signatures in two of our sources with mass infall rates of order 10-4 M_sun/yr. Conclusions. We suggest that star formation is ongoing in these sources despite the presence of HII regions. We further conclude that the source(s) within a single HII region are responsible for the observed large scale structures; that these large structures are not the net effect of multiple outflows from multiple HII regions and hot cores.Comment: 8 pages,2 figures, accepted for publication in A&

    High Resolution Molecular Gas Maps of M33

    Get PDF
    New observations of CO (J=1->0) line emission from M33, using the 25 element BEARS focal plane array at the Nobeyama Radio Observatory 45-m telescope, in conjunction with existing maps from the BIMA interferometer and the FCRAO 14-m telescope, give the highest resolution (13'') and most sensitive (RMS ~ 60 mK) maps to date of the distribution of molecular gas in the central 5.5 kpc of the galaxy. A new catalog of giant molecular clouds (GMCs) has a completeness limit of 1.3 X 10^5 M_sun. The fraction of molecular gas found in GMCs is a strong function of radius in the galaxy, declining from 60% in the center to 20% at galactocentric radius R_gal ~ 4 kpc. Beyond that radius, GMCs are nearly absent, although molecular gas exists. Most (90%) of the emission from low mass clouds is found within 100 pc projected separation of a GMC. In an annulus 2.1< R_gal <4.1 kpc, GMC masses follow a power law distribution with index -2.1. Inside that radius, the mass distribution is truncated, and clouds more massive than 8 X 10^5 M_sun are absent. The cloud mass distribution shows no significant difference in the grand design spiral arms versus the interarm region. The CO surface brightness ratio for the arm to interarm regions is 1.5, typical of other flocculent galaxies.Comment: 14 pages, 14 figures, accepted in ApJ. Some tables poorly typeset in emulateapj; see source files for raw dat

    Flickering of 1.3 cm Sources in Sgr B2: Towards a Solution to the Ultracompact HII Region Lifetime Problem

    Full text link
    Accretion flows onto massive stars must transfer mass so quickly that they are themselves gravitationally unstable, forming dense clumps and filaments. These density perturbations interact with young massive stars, emitting ionizing radiation, alternately exposing and confining their HII regions. As a result, the HII regions are predicted to flicker in flux density over periods of decades to centuries rather than increasing monotonically in size as predicted by simple Spitzer solutions. We have recently observed the Sgr B2 region at 1.3 cm with the VLA in its three hybrid configurations (DnC, CnB and BnA) at a resolution of 0.25''. These observations were made to compare in detail with matched continuum observations from 1989. At 0.25'' resolution, Sgr B2 contains 41 UC HII regions, 6 of which are hypercompact. The new observations of Sgr B2 allow comparison of relative peak flux densites for the HII regions in Sgr B2 over a 23 year time baseline (1989-2012) in one of the most source-rich massive star forming regions in the Milky Way. The new 1.3 cm continuum images indicate that four of the 41 UC HII regions exhibit significant changes in their peak flux density, with one source (K3) dropping in peak flux density, and the other 3 sources (F10.303, F1 and F3) increasing in peak flux density. The results are consistent with statistical predictions from simulations of high mass star formation, suggesting that they offer a solution to the lifetime problem for ultracompact HII regions.Comment: 12 pages, 3 figures, Accepted for publication in the Astrophysical Journal Letter

    Dark cloud cores and gravitational decoupling from turbulent flows

    Full text link
    We test the hypothesis that the starless cores may be gravitationally bound clouds supported largely by thermal pressure by comparing observed molecular line spectra to theoretical spectra produced by a simulation that includes hydrodynamics, radiative cooling, variable molecular abundance, and radiative transfer in a simple one-dimensional model. The results suggest that the starless cores can be divided into two categories: stable starless cores that are in approximate equilibrium and will not evolve to form protostars, and unstable pre-stellar cores that are proceeding toward gravitational collapse and the formation of protostars. The starless cores might be formed from the interstellar medium as objects at the lower end of the inertial cascade of interstellar turbulence. Additionally, we identify a thermal instability in the starless cores. Under par ticular conditions of density and mass, a core may be unstable to expansion if the density is just above the critical density for the collisional coupling of the gas and dust so that as the core expands the gas-dust coupling that cools the gas is reduced and the gas warms, further driving the expansion.Comment: Submitted to Ap

    Massive star-formation toward G28.87+0.07 (IRAS 18411-0338) investigated by means of maser kinematics and radio to infrared, continuum observations

    Full text link
    We used the Very Long Baseline Array (VLBA) and the European VLBI Network (EVN) to perform phase-referenced VLBI observations of the three most powerful maser transitions associated with the high-mass star-forming region G28.87+0.07: the 22.2 GHz H2_{2}O, 6.7 GHz CH3_{3}OH, and 1.665 GHz OH lines. We also performed VLA observations of the radio continuum emission at 1.3 and 3.6 cm and Subaru observations of the continuum emission at 24.5 μ\mum. Two centimeter continuum sources are detected and one of them (named "HMC") is compact and placed at the center of the observed distribution of H2_{2}O, CH3_{3}OH and OH masers. The bipolar distribution of line-of-sight (l.o.s) velocities and the pattern of the proper motions suggest that the water masers are driven by a (proto)stellar jet interacting with the dense circumstellar gas. The same jet could both excite the centimeter continuum source named "HMC" (interpreted as free-free emission from shocked gas) and power the molecular outflow observed at larger scales -- although one cannot exclude that the free-free continuum is rather originating from a hypercompact \ion{H}{2} region. At 24.5 μ\mum, we identify two objects separated along the north-south direction, whose absolute positions agree with those of the two VLA continuum sources. We establish that \sim90% of the luminosity of the region (\sim\times10^{5} L_\sun$) is coming from the radio source "HMC", which confirms the existence of an embedded massive young stellar object (MYSO) exciting the masers and possibly still undergoing heavy accretion from the surrounding envelope.Comment: Accepted for publication in Ap

    Infall of gas as the formation mechanism of stars up to 20 times more massive than the Sun

    Get PDF
    Theory predicts and observations confirm that low-mass stars (like the Sun) in their early life grow by accreting gas from the surrounding material. But for stars ~ 10 times more massive than the Sun (~10 M_sun), the powerful stellar radiation is expected to inhibit accretion and thus limit the growth of their mass. Clearly, stars with masses >10 M_sun exist, so there must be a way for them to form. The problem may be solved by non-spherical accretion, which allows some of the stellar photons to escape along the symmetry axis where the density is lower. The recent detection of rotating disks and toroids around very young massive stars has lent support to the idea that high-mass (> 8 M_sun) stars could form in this way. Here we report observations of an ammonia line towards a high-mass star forming region. We conclude from the data that the gas is falling inwards towards a very young star of ~20 M_sun, in line with theoretical predictions of non-spherical accretion.Comment: 11 pages, 2 figure

    Identification of Clostridium species and DNA fingerprinting of Clostridium perfringens by amplified fragment length polymorphism analysis

    Get PDF
    An amplified fragment length polymorphism (AFLP) method was applied to 129 strains representing 24 different Clostridium species, with special emphasis on pathogenic clostridia of medical or veterinary interest, to assess the potential of AFLP for identification of clostridia. In addition, the ability of the same AFLP protocol to type clostridia at the strain level was assessed by focusing on Clostridium perfringens strains. All strains were typeable by AFLP, so the method seemed to overcome the problem of extracellular DNase production. AFLP differentiated all Clostridium species tested, except for Clostridium ramosum and Clostridium limosum, which clustered together with a 45% similarity level. Other Clostridium species were divided into species-specific clusters or occupied separate positions. Wide genetic diversity was observed among Clostridium botulinum strains, which were divided into seven species-specific clusters. The same AFLP protocol was also suitable for typing C. perfringens at the strain level. A total of 29 different AFLP types were identified for 37 strains of C. perfringens; strains initially originating from the same isolate showed identical fingerprinting patterns and were distinguished from unrelated strains. AFLP proved to be a highly reproducible, easy-to-perform, and relatively fast method which enables high throughput of samples and can serve in the generation of identification libraries. These results indicate that the AFLP method provides a promising tool for the identification and characterization of Clostridium species

    (Sub)mm Interferometry Applications in Star Formation Research

    Full text link
    This contribution gives an overview about various applications of (sub)mm interferometry in star formation research. The topics covered are molecular outflows, accretion disks, fragmentation and chemical properties of low- and high-mass star-forming regions. A short outlook on the capabilities of ALMA is given as well.Comment: 20 pages, 7 figures, in proceedings to "2nd European School on Jets from Young Star: High Angular Resolution Observations". A high-resolution version of the paper can be found at http://www.mpia.de/homes/beuther/papers.htm
    corecore