19 research outputs found

    Study Of The Phytoplankton Plume Dynamics Off The Crozet Islands (Southern Ocean): A Geochemical-Physical Coupled Approach

    Get PDF
    2169-9291The Crozet Archipelago, in the Indian sector of the Southern Ocean, constitutes one of the few physical barriers to the Antarctic Circumpolar Current. Interaction of the currents with the sediments deposited on the margins of these islands contributes to the supply of chemical elements--including iron and other micro-nutrients--to offshore high-nutrient, low-chlorophyll (HNLC) waters. This natural fertilization sustains a phytoplankton bloom that was studied in the framework of the KEOPS-2 project. In this work, we investigated the time scales of the surface water transport between the Crozet Island shelves and the offshore waters, a transport that contributes iron to the phytoplankton bloom. We report shelf-water contact ages determined using geochemical tracers (radium isotopes) and physical data based on in situ drifter data and outputs of a model based on altimetric Lagrangian surface currents. The apparent ages of surface waters determined using the three independent methods are in relatively good agreement with each other. Our results provide constraints on the time scales of the transport between the shelf and offshore waters near the Crozet Islands and highlight the key role played by horizontal transport in natural iron fertilization and in defining the extension of the chlorophyll plume in this HNLC region of the Southern Ocean

    Tropical Atlantic surface current variability from 10 years of TOPEX/Poséïdon altimetry

    No full text
    International audience10 years of surface geostrophic currents from TOPEX/PosĂ©ĂŻdon altimetric data are used to describe the low frequency variability of the tropical Atlantic circulation through Empirical Orthogonal Function analysis. The seasonal variability clearly agrees with previous studies based on climatological data. It shows the tropical Atlantic response to seasonal fluctuations of the overlying wind system. More interesting is the capability, using altimetry, to reach for the first time on a basin scale the year‐to‐year variability from measurements. Abnormal events occur in 1996–1997 and in 2001 with different spatial scales regarding both large scale zonal distribution and regional variability located in the north‐western basin. A first attempt to link these events to climatic indexes (El Niño‐Southern Oscillation, North Atlantic Oscillation) is also evocated

    Sea surface salinity reemergence in an updated North Atlantic in-situ salinity data set

    No full text
    International audienceMonthly sea surface salinity (SSS) fields are constructed from observations, using objective mapping on a 1°x1° grid in the Atlantic between 30°S and 50°N in the 1970-2016 period in an update of the data set of Reverdin et al. (2007). Data coverage is heterogeneous, with increased density in 2002 when Argo floats become available, high density along Voluntary Observing Ship lines, and low density south of 10°S. Using lag correlation, the seasonal reemergence of SSS anomalies is investigated between 20°N and 50°N in 5°x5° boxes during the 1993-2016 period, both locally and remotely following the displacements of the deep mixed-layer waters estimated from virtual float trajectories derived from the daily AVISO surface geostrophic currents. Although SSS data are noisy, local SSS reemergence is detected in about half of the boxes, notably in the northeast and southeast, while little reemergence is seen in the central and part of the eastern subtropical gyre. In the same period, sea surface temperature (SST) reemergence is found only slightly more frequently, reflecting the short data duration. However, taking geostrophic advection into account degrades the detection of remote SSS and even SST reemergence. When anomalies are averaged over broader areas, robust evidence of a second and third SSS reemergence peak is found in the northeastern and southeastern parts of the domain, indicating long cold-season persistence of large-scale SSS anomalies, while only a first SST reemergence is seen. An oceanic reanalysis is used to confirm that the correlation analysis indeed reflects the reemergence of subsurface salinity anomalies

    Direct observations of the ACC transport across the Kerguelen Plateau

    No full text
    International audienceMajor pathways and transport of the Antarctic Circumpolar Current (ACC) crossing the Kerguelen Plateau were directly observed during the 2009 Track cruise. The net eastward transport to the south of the Heard/McDonald Islands is estimated as 56 Sv (1 Sv = 106 m3 s-1), 43 Sv of which is tightly channelled into the Fawn Trough that appears as a predominant cross-plateau gateway of circumpolar flow associated with the Southern ACC Front (SACCF). There are also two secondary passages, with one (6 Sv) being attached to the nearshore slope just south of the Heard/McDonald Islands and the other (7 Sv) passing through the northern Princess Elizabeth Trough. With an additional 2 Sv inferred just south of the Kerguelen Islands, the transport across the entire plateau amounts to 58 Sv, accounting for ~40% of the total ACC transport transiting through the region, 147-152 Sv, quantities consistent with other independent estimates in the Indian sector of the Southern Ocean

    Southern Ocean in-situ temperature trends over 25 years emerge from interannual variability

    No full text
    International audienceDespite playing a major role in global ocean heat storage, the Southern Ocean remains the most sparsely measured region of the global ocean. Here, a unique 25-year temperature time-series of the upper 800 m, repeated several times a year across the Southern Ocean, allows us to document the long-term change within water-masses and how it compares to the interannual variability. Three regions stand out as having strong trends that dominate over interannual variability: warming of the subantarctic waters (0.29 ± 0.09 °C per decade); cooling of the near-surface subpolar waters (−0.07 ± 0.04 °C per decade); and warming of the subsurface subpolar deep waters (0.04 ± 0.01 °C per decade). Although this subsurface warming of subpolar deep waters is small, it is the most robust long-term trend of our section, being in a region with weak interannual variability. This robust warming is associated with a large shoaling of the maximum temperature core in the subpolar deep water (39 ± 09 m per decade), which has been significantly underestimated by a factor of 3 to 10 in past studies. We find temperature changes of comparable magnitude to those reported in Amundsen–Bellingshausen Seas, which calls for a reconsideration of current ocean changes with important consequences for our understanding of future Antarctic ice-sheet mass loss

    On decadal-scale ocean-atmosphere interactions in the extended ECHAM1/LSG climate simulation

    No full text
    International audienceThe last 810 years of a control integration with the ECHAM1/LSG coupled model are used to clarify the nature of the ocean-atmosphere interactions at low frequencies in the North Atlantic and the North Pacific. To a first approximation, the atmosphere acts as a white noise forcing and the ocean responds as a passive integrator. The sea surface temperature (SST) variability primarily results from short time scale fluctuations in surface heat exchanges and Ekman currents, and the former also damp the SST anomalies after they are generated. The thermocline variability is primarily driven by Ekman pumping. Because the heat, momentum, and vorticity fluxes at the sea surface are correlated in space and time, the SST variability is directly linked to that in the ocean interior. The SST is also modulated by the wind-driven geostrophic fluctuations, resulting in persistent correlation with the thermocline changes and a slight low-frequency redness of the SST spectra. The main dynamics are similar in the two oceans, although in the North Pacific the SST variability is more strongly influenced by advection changes and the oceanic time scales are larger. A maximum covariance analysis based on singular value decomposition in lead and lag conditions indicates that some of the main modes of atmospheric variability in the two oceans are sustained by a very weak positive feedback between the atmosphere, SST, and the strength of the subtropical and subpolar gyres. In addition, in the North Atlantic the main surface pressure mode has a small quasi-oscillatory component at 6-year period, and advective resonance occurs for SST around 10-year period, both periods being also singled out by multichannel singular spectrum analysis. The ocean-atmosphere coupling is however much too weak to redden the tropospheric spectra or create anything more than tiny spectral peaks, so that the atmospheric and oceanic variability is dominated in both ocean sectors by the one-way interactions

    Quasi-planktonic behavior of foraging top marine predators

    Get PDF
    International audienceMonitoring marine top predators is fundamental for assessing the health and functioning of open ocean ecosystems. Although recently tracking observations have substantially increased, factors determining the horizontal exploration of the ocean by marine predators are still largely unknown, especially at the scale of behavioral switches (1–100 km, days-weeks). It is commonly assumed that the influence of water movement can be neglected for animals capable of swimming faster than the current. Here, we challenge this assumption by combining the use of biologging (GPS and accelerometry), satellite altimetry and in-situ oceanographic data (ADCP and drifting buoys) to investigate the effect of the mesoscale ocean dynamics on a marine predator, the southern elephant seal. A Lagrangian approach reveals that trajectories of elephant seals are characterized by quasi-planktonic bouts where the animals are horizontally drifting. These bouts correspond to periods of increased foraging effort, indicating that in the quasi-planktonic conditions energy is allocated to diving and chasing, rather than in horizontal search of favourable grounds. These results suggest that mesoscale features like eddies and fronts may act as a focal points for trophic interactions not only by bottom-up modulation of nutrient injection, but also by directly entraining horizontal displacements of the upper trophic levels
    corecore