214 research outputs found

    Impacts of Invasive Plants on Sandhill Crane (\u3ci\u3eGrus canadensis\u3c/i\u3e) Roosting Habitat

    Get PDF
    Invasive plants continue to spread in riparian ecosystems, causing both ecological and economic damage. This research investigated the impacts of common reed, purple loosestrife, riparian shrubland, and riparian woodlands on the quality and quantity of sandhill crane roosting habitat in the central Platte River, Nebraska, using a discrete choice model. A more detailed investigation of the impacts of common reed on sandhill crane roosting habitat was performed by forecasting a spread or contraction of this invasive plant. The discrete choice model indicates that riparian woodlands had the largest negative impact on sandhill crane roosting habitat. The forecasting results predict that a contraction of common reed could increase sandhill crane habitat availability by 50%, whereas an expansion could reduce the availability by as much as 250%. This suggests that if the distribution of common reed continues to expand in the central Platte River the availability of sandhill crane roosting habitat would likely be greatly reduced

    Cost-Effectiveness Analysis of Sandhill Crane Habitat Management

    Get PDF
    Invasive species often threaten native wildlife populations and strain the budgets of agencies charged with wildlife management. We demonstrate the potential of cost-effectiveness analysis to improve the efficiency and value of efforts to enhance sandhill crane (Grus canadensis) roosting habitat. We focus on the central Platte River in Nebraska (USA), a region of international ecological importance for migrating avian species including sandhill cranes. Cost-effectiveness analysis is a valuation process designed to compare alternative actions based on the cost of achieving a pre-determined objective. We estimated costs for removal of invasive vegetation using geographic information system simulations and calculated benefits as the increase in area of sandhill crane roosting habitat. We generated cost effectiveness values for removing invasive vegetation on 7 land parcels and for the entire central Platte River to compare the cost-effectiveness of management at specific sites and for the central Platte River landscape. Median cost effectiveness values for the 7 land parcels evaluated suggest that costs for creating 1 additional hectare of sandhill crane roosting habitat totaled US 1,595.Bycontrast,wefoundthatcreatinganadditionalhectareofsandhillcraneroostinghabitatcouldcostasmuchasUS1,595. By contrast, we found that creating an additional hectare of sandhill crane roosting habitat could cost asmuch as US 12,010 for some areas in the central Platte River, indicating substantial cost savings can be achieved by using a cost effectiveness analysis to target specific land parcels for management. Cost-effectiveness analysis, used in conjunction with geographic information systems, can provide decisionmakers with a new tool for identifying the most economically efficient allocation of resources to achieve habitat management goals

    Evaluation of the Geothermal Potential of the Western Snake River Plain Based on a Deep Corehole on the Mountain Home AFB Near Mountain Home, Idaho

    Get PDF
    A geothermal exploration corehole was drilled to a total depth of 1821.5 m on the Mountain Home Air Force Base near Mountain Home, Idaho. The corehole was used to collect an unusually large amount of data, including uniaxial compressive stress (UCS) experiments on core samples, to evaluate the geothermal potential of the western Snake River Plain. In addition, unlike many exploration holes in this region, a fluid entry was encountered at 1745.3 m and flowed artesian to the surface. A maximum temperature of 149.4 °C was calculated for the entry. A temperature log run on the corehole from 3 to 1675 m is nearly linear with little variation. The average geothermal gradient is 73 °C/km, and the average heat flow between 200 and 1500 m is 102 ± 15 mW/m2. Chemical analyses of a sample from the fluid entry suggest that a significant proportion of the water is not meteoric. Five geothermometers show equilibrium temperature in the range of 133–157 °C. Furthermore, based on the unconfined UCS experiments on basalt core samples, a brittle unit was found to comprise the fractured reservoir that the geothermal water flows from, while an overlying ductile unit acts as a hydrothermal caprock. This implies that the reservoir/caprock pair may be a target for future exploration wells drilled to delineate the extent of the potential resource and the boundaries of the connected fracture network

    Impaired exercise capacity in post-COVID syndrome: the role of VWF-ADAMTS13 axis

    Get PDF
    Post-COVID syndrome (PCS) or Long-COVID is an increasingly recognised complication of acute SARS-CoV-2 infection, characterised by persistent fatigue, reduced exercise tolerance chest pain, shortness of breath and cognitive slowing. Acute COVID-19 is strongly linked with increased risk of thrombosis; a prothrombotic state, quantified by elevated Von Willebrand Factor (VWF) Antigen (Ag):ADAMTS13 ratio, and is associated with severity of acute COVID-19 infection. We investigated if patients with PCS also had evidence of a pro-thrombotic state associating with symptom severity. In a large cohort of patients referred to a dedicated post-COVID-19 clinic, thrombotic risk including VWF(Ag):ADAMTS13 ratio, was investigated. An elevated VWF(Ag):ADAMTS13 ratio (≥1.5) was raised in nearly one-third of the cohort and four times more likely in patients with impaired exercise capacity as evidenced by desaturation ≥3% and/or rise in lactate level more than 1 from baseline on 1-minute sit to stand test and/or 6-minute walk test (p<0.0001). 20% (56/276) had impaired exercise capacity, of which 55% (31/56) had a raised VWF(Ag):ADAMTS13 ratio ≥1.5 (p<0.0001). FVIII and VWF(Ag) were elevated in 26% and 18% respectively and support a hypercoagulable state in some patients with PCS. These findings suggest possible ongoing microvascular/endothelial dysfunction in the pathogenesis of PCS and highlight a potential role for antithrombotic therapy in the management of these patients

    Effectively Measuring Exercise-Related Variations in T1ρ and T2 Relaxation Times of Healthy Articular Cartilage.

    Get PDF
    BACKGROUND: Determining the compositional response of articular cartilage to dynamic joint-loading using MRI may be a more sensitive assessment of cartilage status than conventional static imaging. However, distinguishing the effects of joint-loading vs. inherent measurement variability remains difficult, as the repeatability of these quantitative methods is often not assessed or reported. PURPOSE: To assess exercise-induced changes in femoral, tibial, and patellar articular cartilage composition and compare these against measurement repeatability. STUDY TYPE: Prospective observational study. POPULATION: Phantom and 19 healthy participants. FIELD STRENGTH/SEQUENCE: 3T; 3D fat-saturated spoiled gradient recalled-echo; T1ρ - and T2 -prepared pseudosteady-state 3D fast spin echo. ASSESSMENT: The intrasessional repeatability of T1ρ and T2 relaxation mapping, with and without knee repositioning between two successive measurements, was determined in 10 knees. T1ρ and T2 relaxation mapping of nine knees was performed before and at multiple timepoints after a 5-minute repeated, joint-loading stepping activity. 3D surface models were created from patellar, femoral, and tibial articular cartilage. STATISTICAL TESTS: Repeatability was assessed using root-mean-squared-CV (RMS-CV). Using Bland-Altman analysis, thresholds defined as the smallest detectable difference (SDD) were determined from the repeatability data with knee repositioning. RESULTS: Without knee repositioning, both surface-averaged T1ρ and T2 were very repeatable on all cartilage surfaces, with RMS-CV SDD) average exercise-induced in T1ρ and T2 of femoral (-8.0% and -5.3%), lateral tibial (-6.9% and -5.9%), medial tibial (+5.8% and +2.9%), and patellar (-7.9% and +2.8%) cartilage were observed. DATA CONCLUSION: Joint-loading with a stepping activity resulted in T1ρ and T2 changes above background measurement error. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY STAGE: 1 J. MAGN. RESON. IMAGING 2020;52:1753-1764.GlaxoSmithKline National Institute of Health Research (NIHR) Cambridge Biomedical Research Centr

    From salty to fresh—salinity processes in the Upper-ocean Regional Study-2 (SPURS-2) : diagnosing the physics of a rainfall-dominated salinity minimum

    Get PDF
    Author Posting. © The Oceanography Society, 2015. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 28, no. 1 (2015): 150-159, doi:10.5670/oceanog.2015.15.One of the notable features of the global ocean is that the salinity of the North Atlantic is about 1 psu higher than that of the North Pacific. This contrast is thought to be due to one of the large asymmetries in the global water cycle: the transport of water vapor by the trade winds across Central America and the lack of any comparable transport into the Atlantic from the Sahara Desert. Net evaporation serves to maintain high Atlantic salinities, and net precipitation lowers those in the Pacific. Because the effects on upper-ocean physics are markedly different in the evaporating and precipitating regimes, the next phase of research in the Salinity Processes in the Upper-ocean Regional Study (SPURS) must address a high rainfall region. It seemed especially appropriate to focus on the eastern tropical Pacific that is freshened by the water vapor carried from the Atlantic. In a sense, the SPURS-2 Pacific region will be looking at the downstream fate of the freshwater carried out of the SPURS-1 North Atlantic region. Rainfall tends to lower surface density and thus inhibit vertical mixing, leading to quite different physical structure and dynamics in the upper ocean. Here, we discuss the motivations for the location of SPURS-2 and the scientific questions we hope to address

    DNA methylation at a nutritionally sensitive region of the PAX8 gene is associated with thyroid volume and function in Gambian children.

    Get PDF
    Funder: Wellcome TrustPAX8 is a key thyroid transcription factor implicated in thyroid gland differentiation and function, and PAX8 gene methylation is reported to be sensitive to the periconceptional environment. Using a novel recall-by-epigenotype study in Gambian children, we found that PAX8 hypomethylation at age 2 years is associated with a 21% increase in thyroid volume and an increase in free thyroxine (T4) at 5 to 8 years, the latter equivalent to 8.4% of the normal range. Free T4 was associated with a decrease in DXA-derived body fat and bone mineral density. Furthermore, offspring PAX8 methylation was associated with periconceptional maternal nutrition, and methylation variability was influenced by genotype, suggesting that sensitivity to environmental exposures may be under partial genetic control. Together, our results demonstrate a possible link between early environment, PAX8 gene methylation and thyroid gland development and function, with potential implications for early embryonic programming of thyroid-related health and disease

    Recombinant tissue-type plasminogen activator versus a novel dosing regimen of urokinase in acute pulmonary embolism: a randomized controlled multicenter trial

    Get PDF
    AbstractThrombolysis of acute pulmonary embolism can be accomplished more rapidly and safely with 100 mg of recombinant human tissue-type plasminogen activator (rt-PA) (Activase) than with a conventional dose of urokinase (Abbokinase) given as a 4,400-U/kg bolus dose, followed by 4,400 U/kg per h for 24 h. To determine the effects of a more concentrated urokinase dose administered over a shorter time course, this trial enrolled 90 patients with baseline perfusion lung scans and angiographically documented pulmonary embolism. They were randomized to receive either 100 mg/2 h of rt-PA or a novel dosing regimen of urokinase: 3 million U/2 h with the initial 1 million U given as a bolus injection over 10 min. Both drugs were delivered through a peripheral vein.To assess efficacy after initiation of therapy, repeat pulmonary angiograms at 2 h were performed in 87 patients and then graded in a blinded manner by a panel of six investigators. Of the 42 patients allocated to rt-PA therapy, 79% showed angiographic improvement at 2 h, compared with 67% of the 45 patients randomized to urokinase therapy (95% confidence interval for the difference in these proportions [rt-PA minus urokinase] is −6.6% to 30.4%; p = 0.11). The mean change in perfusion lung scans between baseline and 24 h was similar for both treatments. Three patients (two treated with rt-PA and one with urokinase) had an intracranial hemorrhage, which was fatal in one.The results indicate that a 2-h regimen of rt-PA and a new dosing regimen of urokinase exhibit similar efficacy and safety for treatment of acute pulmonary embolism

    Environmentally sensitive hotspots in the methylome of the early human embryo

    Get PDF
    In humans, DNA methylation marks inherited from gametes are largely erased following fertilisation, prior to construction of the embryonic methylome. Exploiting a natural experiment of seasonal variation including changes in diet and nutritional status in rural Gambia, we analysed three datasets covering two independent child cohorts and identified 259 CpGs showing consistent associations between season of conception (SoC) and DNA methylation. SoC effects were most apparent in early infancy, with evidence of attenuation by mid-childhood. SoC-associated CpGs were enriched for metastable epialleles, parent-of-origin-specific methylation and germline differentially methylated regions, supporting a periconceptional environmental influence. Many SoC-associated CpGs overlapped enhancers or sites of active transcription in H1 embryonic stem cells and fetal tissues. Half were influenced but not determined by measured genetic variants that were independent of SoC. Environmental 'hotspots' providing a record of environmental influence at periconception constitute a valuable resource for investigating epigenetic mechanisms linking early exposures to lifelong health and disease

    Iron homeostasis in full-term, normal birthweight Gambian neonates over the first week of life

    Get PDF
    Human neonates elicit a profound hypoferremia which may protect against bacterial sepsis. We examined the transience of this hypoferremia by measuring iron and its chaperone proteins, inflammatory and haematological parameters over the first post-partum week. We prospectively studied term, normal weight Gambian newborns. Umbilical cord vein and artery, and serial venous blood samples up to day 7 were collected. Hepcidin, serum iron, transferrin, transferrin saturation, haptoglobin, c-reactive protein, α1-acid-glycoprotein, soluble transferrin receptor, ferritin, unbound iron-binding capacity and full blood count were assayed. In 278 neonates we confirmed the profound early postnatal decrease in serum iron (22.7 ± 7.0 µmol/L at birth to 7.3 ± 4.6 µmol/L during the first 6–24 h after birth) and transferrin saturation (50.2 ± 16.7% to 14.4 ± 6.1%). Both variables increased steadily to reach 16.5 ± 3.9 µmol/L and 36.6 ± 9.2% at day 7. Hepcidin increased rapidly during the first 24 h of life (19.4 ± 14.4 ng/ml to 38.9 ± 23.9 ng/ml) and then dipped (32.7 ± 18.4 ng/ml) before rising again at one week after birth (45.2 ± 19.1 ng/ml). Inflammatory markers increased during the first week of life. The acute postnatal hypoferremia in human neonates on the first day of life is highly reproducible but transient. The rise in serum iron during the first week of life occurs despite very high hepcidin levels indicating partial hepcidin resistance. Trial Registration: clinicaltrials.gov (NCT03353051). Registration date: November 27, 2017
    corecore