201 research outputs found

    Metabolic profile in patients with newly diagnosed bipolar disorder and their unaffected first-degree relatives

    Get PDF
    Abstract Objective The prevalence of metabolic syndrome and insulin resistance is twice as high in patients with bipolar disorder compared with the general population, and possibly associated with a disabling illness trajectory of bipolar disorder, an increased risk of cardiovascular disease and premature death. Despite these detrimental effects, the prevalence of metabolic syndrome and insulin resistance in patients newly diagnosed with bipolar disorder and their unaffected first-degree relatives is largely unknown. Methods In a cross-sectional study of 206 patients with newly diagnosed bipolar disorder, 50 of their unaffected first-degree relatives and 109 healthy age- and sex-matched individuals, we compared the prevalence of metabolic syndrome and insulin resistance (HOMA-IR). In patients with bipolar disorder, we further investigated illness and medication variables associated with the metabolic syndrome and insulin resistance. Results Higher rates of metabolic syndrome (odds ratio = 3.529, 95% CI 1.378–9.041, P = 0.009) and levels of insulin resistance (B = 1.203, 95% CI 1.059–1.367, P = 0.005) were found in patients newly diagnosed with bipolar disorder, but not in their unaffected first-degree relatives compared with matched healthy individuals (data adjusted for sex and age). Most patients with bipolar disorder (94.7%) were diagnosed within the preceding 2 years, and the average illness duration, defined as time from first mood episode, was 10 years. Conclusion Our findings of elevated prevalence of metabolic syndrome and insulin resistance in patients with newly diagnosed bipolar disorder highlight the importance of screening for these conditions at an early stage to employ adequate and early care reducing the risk of cardiovascular disease and premature death

    Machine learning and big data analytics in bipolar disorder:A position paper from the International Society for Bipolar Disorders Big Data Task Force

    Get PDF
    Objectives The International Society for Bipolar Disorders Big Data Task Force assembled leading researchers in the field of bipolar disorder (BD), machine learning, and big data with extensive experience to evaluate the rationale of machine learning and big data analytics strategies for BD. Method A task force was convened to examine and integrate findings from the scientific literature related to machine learning and big data based studies to clarify terminology and to describe challenges and potential applications in the field of BD. We also systematically searched PubMed, Embase, and Web of Science for articles published up to January 2019 that used machine learning in BD. Results The results suggested that big data analytics has the potential to provide risk calculators to aid in treatment decisions and predict clinical prognosis, including suicidality, for individual patients. This approach can advance diagnosis by enabling discovery of more relevant data-driven phenotypes, as well as by predicting transition to the disorder in high-risk unaffected subjects. We also discuss the most frequent challenges that big data analytics applications can face, such as heterogeneity, lack of external validation and replication of some studies, cost and non-stationary distribution of the data, and lack of appropriate funding. Conclusion Machine learning-based studies, including atheoretical data-driven big data approaches, provide an opportunity to more accurately detect those who are at risk, parse-relevant phenotypes as well as inform treatment selection and prognosis. However, several methodological challenges need to be addressed in order to translate research findings to clinical settings.Peer reviewe

    Depression and sickness behavior are Janus-faced responses to shared inflammatory pathways

    Get PDF
    It is of considerable translational importance whether depression is a form or a consequence of sickness behavior. Sickness behavior is a behavioral complex induced by infections and immune trauma and mediated by pro-inflammatory cytokines. It is an adaptive response that enhances recovery by conserving energy to combat acute inflammation. There are considerable phenomenological similarities between sickness behavior and depression, for example, behavioral inhibition, anorexia and weight loss, and melancholic (anhedonia), physio-somatic (fatigue, hyperalgesia, malaise), anxiety and neurocognitive symptoms. In clinical depression, however, a transition occurs to sensitization of immuno-inflammatory pathways, progressive damage by oxidative and nitrosative stress to lipids, proteins, and DNA, and autoimmune responses directed against self-epitopes. The latter mechanisms are the substrate of a neuroprogressive process, whereby multiple depressive episodes cause neural tissue damage and consequent functional and cognitive sequelae. Thus, shared immuno-inflammatory pathways underpin the physiology of sickness behavior and the pathophysiology of clinical depression explaining their partially overlapping phenomenology. Inflammation may provoke a Janus-faced response with a good, acute side, generating protective inflammation through sickness behavior and a bad, chronic side, for example, clinical depression, a lifelong disorder with positive feedback loops between (neuro)inflammation and (neuro)degenerative processes following less well defined triggers

    The Center for Integrated Molecular Brain Imaging (Cimbi) database

    Get PDF
    AbstractWe here describe a multimodality neuroimaging containing data from healthy volunteers and patients, acquired within the Lundbeck Foundation Center for Integrated Molecular Brain Imaging (Cimbi) in Copenhagen, Denmark. The data is of particular relevance for neurobiological research questions related to the serotonergic transmitter system with its normative data on the serotonergic subtype receptors 5-HT1A, 5-HT1B, 5-HT2A, and 5-HT4 and the 5-HT transporter (5-HTT), but can easily serve other purposes.The Cimbi database and Cimbi biobank were formally established in 2008 with the purpose to store the wealth of Cimbi-acquired data in a highly structured and standardized manner in accordance with the regulations issued by the Danish Data Protection Agency as well as to provide a quality-controlled resource for future hypothesis-generating and hypothesis-driven studies.The Cimbi database currently comprises a total of 1100 PET and 1000 structural and functional MRI scans and it holds a multitude of additional data, such as genetic and biochemical data, and scores from 17 self-reported questionnaires and from 11 neuropsychological paper/computer tests. The database associated Cimbi biobank currently contains blood and in some instances saliva samples from about 500 healthy volunteers and 300 patients with e.g., major depression, dementia, substance abuse, obesity, and impulsive aggression. Data continue to be added to the Cimbi database and biobank

    Towards the clinical implementation of pharmacogenetics in bipolar disorder.

    Get PDF
    BackgroundBipolar disorder (BD) is a psychiatric illness defined by pathological alterations between the mood states of mania and depression, causing disability, imposing healthcare costs and elevating the risk of suicide. Although effective treatments for BD exist, variability in outcomes leads to a large number of treatment failures, typically followed by a trial and error process of medication switches that can take years. Pharmacogenetic testing (PGT), by tailoring drug choice to an individual, may personalize and expedite treatment so as to identify more rapidly medications well suited to individual BD patients.DiscussionA number of associations have been made in BD between medication response phenotypes and specific genetic markers. However, to date clinical adoption of PGT has been limited, often citing questions that must be answered before it can be widely utilized. These include: What are the requirements of supporting evidence? How large is a clinically relevant effect? What degree of specificity and sensitivity are required? Does a given marker influence decision making and have clinical utility? In many cases, the answers to these questions remain unknown, and ultimately, the question of whether PGT is valid and useful must be determined empirically. Towards this aim, we have reviewed the literature and selected drug-genotype associations with the strongest evidence for utility in BD.SummaryBased upon these findings, we propose a preliminary panel for use in PGT, and a method by which the results of a PGT panel can be integrated for clinical interpretation. Finally, we argue that based on the sufficiency of accumulated evidence, PGT implementation studies are now warranted. We propose and discuss the design for a randomized clinical trial to test the use of PGT in the treatment of BD

    Using lithium as a neuroprotective agent in patients with cancer

    Get PDF
    Neurocognitive impairment is being increasingly recognized as an important issue in patients with cancer who develop cognitive difficulties either as part of direct or indirect involvement of the nervous system or as a consequence of either chemotherapy-related or radiotherapy-related complications. Brain radiotherapy in particular can lead to significant cognitive defects. Neurocognitive decline adversely affects quality of life, meaningful employment, and even simple daily activities. Neuroprotection may be a viable and realistic goal in preventing neurocognitive sequelae in these patients, especially in the setting of cranial irradiation. Lithium is an agent that has been in use for psychiatric disorders for decades, but recently there has been emerging evidence that it can have a neuroprotective effect.This review discusses neurocognitive impairment in patients with cancer and the potential for investigating the use of lithium as a neuroprotectant in such patients.<br /

    Using lithium as a neuroprotective agent in patients with cancer

    Get PDF
    Neurocognitive impairment is being increasingly recognized as an important issue in patients with cancer who develop cognitive difficulties either as part of direct or indirect involvement of the nervous system or as a consequence of either chemotherapy-related or radiotherapy-related complications. Brain radiotherapy in particular can lead to significant cognitive defects. Neurocognitive decline adversely affects quality of life, meaningful employment, and even simple daily activities. Neuroprotection may be a viable and realistic goal in preventing neurocognitive sequelae in these patients, especially in the setting of cranial irradiation. Lithium is an agent that has been in use for psychiatric disorders for decades, but recently there has been emerging evidence that it can have a neuroprotective effect.This review discusses neurocognitive impairment in patients with cancer and the potential for investigating the use of lithium as a neuroprotectant in such patients.<br /
    corecore