259 research outputs found

    A Simulation of High Latitude F-Layer Instabilities in the Presence of Magnetosphere-Ionosphere Coupling

    Get PDF
    A magnetic-field-line-integrated model of plasma interchange instabilities is developed for the high latitude ionosphere including magnetospheric coupling effects. We show that primary magnetosphere-ionosphere coupling effect is to incorporate the inertia of the magnetospheric plasma in the analysis. As a specific example, we present the first simulation of the E x B instability in the inertial regime, i.e., nu sub i omega where nu sub i is the ion-neutral collision frequency and omega is the wave frequency. We find that the inertial E x B instability develops in a fundamentally different manner than in the collisional case ni sub i omega. Our results show that striations produced in the inertial regime are spread and retarded by ion inertial effects, and result in more isotropic irregularities than those seen in the collisional case

    Leibnizian, Galilean and Newtonian structures of spacetime

    Get PDF
    The following three geometrical structures on a manifold are studied in detail: (1) Leibnizian: a non-vanishing 1-form Ω\Omega plus a Riemannian metric \h on its annhilator vector bundle. In particular, the possible dimensions of the automorphism group of a Leibnizian G-structure are characterized. (2) Galilean: Leibnizian structure endowed with an affine connection ∇\nabla (gauge field) which parallelizes Ω\Omega and \h. Fixed any vector field of observers Z (Ω(Z)=1\Omega (Z) = 1), an explicit Koszul--type formula which reconstruct bijectively all the possible ∇\nabla's from the gravitational G=∇ZZ{\cal G} = \nabla_Z Z and vorticity ω=rotZ/2\omega = rot Z/2 fields (plus eventually the torsion) is provided. (3) Newtonian: Galilean structure with \h flat and a field of observers Z which is inertial (its flow preserves the Leibnizian structure and ω=0\omega = 0). Classical concepts in Newtonian theory are revisited and discussed.Comment: Minor errata corrected, to appear in J. Math. Phys.; 22 pages including a table, Late

    Mode resolved density of atmospheric aerosol particles

    Get PDF
    In this study, we investigate the mode resolved density of ultrafine atmospheric particles measured in boreal forest environment. The method used here enables us to find the distinct density information for each mode in atmospheric fine particle population: the density values for nucleation, Aitken, and accumulation mode particles are presented. The experimental data was gained during 2 May 2005–19 May 2005 at the boreal forest measurement station "SMEAR II" in Hyytiälä, Southern Finland. The density values for accumulation mode varied from 1.1 to 2 g/cm<sup>3</sup> (average 1.5 g/cm<sup>3</sup>) and for Aitken mode from 0.4 to 2 g/cm<sup>3</sup> (average 0.97 g/cm<sup>3</sup>). As an overall trend during the two weeks campaign, the density value of Aitken mode was seen to gradually increase. With the present method, the time dependent behaviour of the particle density can be investigated in the time scale of 10 min. This allows us to follow the density evolution of the nucleation mode particles during the particle growth process following the nucleation burst. The density of nucleation mode particles decreased during the growth process. The density values for 15 nm particles were 1.2–1.5 g/cm<sup>3</sup> and for grown 30 nm particles 0.5–1 g/cm<sup>3</sup>. These values are consistent with the present knowledge that the condensing species are semi-volatile organics, emitted from the boreal forest

    Future changes in Mekong River hydrology: impact of climate change and reservoir operation on discharge

    Get PDF
    The transboundary Mekong River is facing two ongoing changes that are expected to significantly impact its hydrology and the characteristics of its exceptional flood pulse. The rapid economic development of the riparian countries has led to massive plans for hydropower construction, and projected climate change is expected to alter the monsoon patterns and increase temperature in the basin. The aim of this study is to assess the cumulative impact of these factors on the hydrology of the Mekong within next 20–30 yr. We downscaled the output of five general circulation models (GCMs) that were found to perform well in the Mekong region. For the simulation of reservoir operation, we used an optimisation approach to estimate the operation of multiple reservoirs, including both existing and planned hydropower reservoirs. For the hydrological assessment, we used a distributed hydrological model, VMod, with a grid resolution of 5 km × 5 km. In terms of climate change's impact on hydrology, we found a high variation in the discharge results depending on which of the GCMs is used as input. The simulated change in discharge at Kratie (Cambodia) between the baseline (1982–1992) and projected time period (2032–2042) ranges from −11% to +15% for the wet season and −10% to +13% for the dry season. Our analysis also shows that the changes in discharge due to planned reservoir operations are clearly larger than those simulated due to climate change: 25–160% higher dry season flows and 5–24% lower flood peaks in Kratie. The projected cumulative impacts follow rather closely the reservoir operation impacts, with an envelope around them induced by the different GCMs. Our results thus indicate that within the coming 20–30 yr, the operation of planned hydropower reservoirs is likely to have a larger impact on the Mekong hydrograph than the impacts of climate change, particularly during the dry season. On the other hand, climate change will increase the uncertainty of the estimated reservoir operation impacts: our results indicate that even the direction of the flow-related changes induced by climate change is partly unclear. Consequently, both dam planners and dam operators should pay closer attention to the cumulative impacts of climate change and reservoir operation on aquatic ecosystems, including the multibillion-dollar Mekong fisheries

    Can there be water scarcity with abundance of water? : Analyzing water stress during a severe drought in Finland

    Get PDF
    Severe droughts can affect water security even in countries with ample water resources. In addition, droughts are estimated to become more frequent in several regions due to changing climate. Drought affects many socio-economic sectors (e.g., agriculture, water supply, and industry), as it did in 2018 in Finland. Understanding the basin-wide picture is crucial in drought management planning. To identify vulnerable and water stressed areas in Finland, a water use-to-availability analysis was executed with a reference drought. Water stress was analyzed with the Water Depletion Index WDI. The analysis was executed using national water permits and databases. To represent a severe but realistic drought event, we modelled discharges and runoffs from the worst drought of the last century in Finland (1939–1942). The potential for performing similar analyses in data scarce contexts was also tested using estimates from global models as a screening tool. The results show that the South and Southwest of Finland would have problems with water availability during a severe drought. The most vulnerable areas would benefit from drought mitigation measures and management plans. These measures could be incorporated into the EU River Basin Management Plans

    CCN activation of fumed silica aerosols mixed with soluble pollutants

    Get PDF
    Particle-water interactions of completely soluble or insoluble particles are fairly well understood but less is known of aerosols consisting of mixtures of soluble and insoluble components. In this study, laboratory measurements were performed to investigate cloud condensation nuclei (CCN) activity of silica particles mixed with ammonium sulfate (a salt), sucrose (a sugar) and bovine serum albumin known as BSA (a protein). The agglomerated structure of the silica particles was investigated using measurements with a differential mobility analyser (DMA) and an aerosol particle mass analyser (APM). Based on these data, the particles were assumed to be compact agglomerates when studying their CCN activation capabilities. Furthermore, the critical super-saturations of particles consisting of pure and mixed soluble and insoluble compounds were explored using existing theoretical frameworks. These results showed that the CCN activation of single-component particles was in good agreement with Kohler- and adsorption theory based models when the agglomerated structure was accounted for. For mixed particles the CCN activation was governed by the soluble components, and the soluble fraction varied considerably with particle size for our wet-generated aerosols. Our results confirm the hypothesis that knowing the soluble fraction is the key parameter needed for describing the CCN activation of mixed aerosols, and highlight the importance of controlled coating techniques for acquiring a detailed understanding of the CCN activation of atmospheric insoluble particles mixed with soluble pollutants.Peer reviewe

    The role of low volatile organics on secondary organic aerosol formation

    Get PDF
    Large-scale atmospheric models, which typically describe secondary organic aerosol (SOA) formation based on chamber experiments, tend to systematically underestimate observed organic aerosol burdens. Since SOA constitutes a significant fraction of atmospheric aerosol, this discrepancy translates into an underestimation of SOA contribution to radiative forcing of atmospheric aerosol. Here we show that the underestimation of SOA yields can be partly explained by wall losses of SOA forming compounds during chamber experiments. We present a chamber experiment where α-pinene and ozone are injected into a Teflon chamber. When these two compounds react, we observe rapid formation and growth of new particles. Theoretical analysis of this formation and growth event indicates rapid formation of oxidized volatile organic compounds (OVOC) of very low volatility in the chamber. If these oxidized organic compounds form in the gas phase, their wall losses will have significant implications on their partitioning between the gas and particle phase. Although these OVOCs of very low volatility contribute to the growth of new particles, their mass will almost completely be depleted to the chamber walls during the experiment, while the depletion of OVOCs of higher volatilities is less efficient. According to our model simulations, the volatilities of OVOC contributing to the new particle formation event can be of the order of 10−5 μg m−3

    Metabolic investigations prevent liver transplantation in two young children with citrullinemia type I

    Get PDF
    Acute liver failure may be caused by a variety of disorders including inborn errors of metabolism. In those cases, rapid metabolic investigations and adequate treatment may avoid the need for liver transplantation. We report two patients who presented with acute liver failure and were referred to our center for liver transplantation work-up. Urgent metabolic investigations revealed citrullinemia type I. Treatment for citrullinemia type I avoided the need for liver transplantation. Acute liver failure as a presentation of citrullinemia type I has not previously been reported in young children. Although acute liver failure has occasionally been described in other urea cycle disorders, these disorders may be underestimated as a cause. Timely diagnosis and treatment of these disorders may avoid liver transplantation and improve clinical outcome. Therefore, urea cycle disorders should be included in the differential diagnosis in young children presenting with acute liver failure
    • …
    corecore