309 research outputs found

    A Simulation of High Latitude F-Layer Instabilities in the Presence of Magnetosphere-Ionosphere Coupling

    Get PDF
    A magnetic-field-line-integrated model of plasma interchange instabilities is developed for the high latitude ionosphere including magnetospheric coupling effects. We show that primary magnetosphere-ionosphere coupling effect is to incorporate the inertia of the magnetospheric plasma in the analysis. As a specific example, we present the first simulation of the E x B instability in the inertial regime, i.e., nu sub i omega where nu sub i is the ion-neutral collision frequency and omega is the wave frequency. We find that the inertial E x B instability develops in a fundamentally different manner than in the collisional case ni sub i omega. Our results show that striations produced in the inertial regime are spread and retarded by ion inertial effects, and result in more isotropic irregularities than those seen in the collisional case

    Evolution of particle composition in CLOUD nucleation experiments

    Get PDF
    Sulphuric acid, ammonia, amines, and oxidised organics play a crucial role in nanoparticle formation in the atmosphere. In this study, we investigate the composition of nucleated nanoparticles formed from these compounds in the CLOUD (Cosmics Leaving Outdoor Droplets) chamber experiments at CERN (Centre européen pour la recherche nucléaire). The investigation was carried out via analysis of the particle hygroscopicity, ethanol affinity, oxidation state, and ion composition. Hygroscopicity was studied by a hygroscopic tandem differential mobility analyser and a cloud condensation nuclei counter, ethanol affinity by an organic differential mobility analyser and particle oxidation level by a high-resolution time-of-flight aerosol mass spectrometer. The ion composition was studied by an atmospheric pressure interface time-of-flight mass spectrometer. The volume fraction of the organics in the particles during their growth from sizes of a few nanometers to tens of nanometers was derived from measured hygroscopicity assuming the Zdanovskii–Stokes–Robinson relationship, and compared to values gained from the spectrometers. The ZSR-relationship was also applied to obtain the measured ethanol affinities during the particle growth, which were used to derive the volume fractions of sulphuric acid and the other inorganics (e.g. ammonium salts). In the presence of sulphuric acid and ammonia, particles with a mobility diameter of 150 nm were chemically neutralised to ammonium sulphate. In the presence of oxidation products of pinanediol, the organic volume fraction of freshly nucleated particles increased from 0.4 to ~0.9, with an increase in diameter from 2 to 63 nm. Conversely, the sulphuric acid volume fraction decreased from 0.6 to 0.1 when the particle diameter increased from 2 to 50 nm. The results provide information on the composition of nucleated aerosol particles during their growth in the presence of various combinations of sulphuric acid, ammonia, dimethylamine and organic oxidation products

    Leibnizian, Galilean and Newtonian structures of spacetime

    Get PDF
    The following three geometrical structures on a manifold are studied in detail: (1) Leibnizian: a non-vanishing 1-form Ω\Omega plus a Riemannian metric \h on its annhilator vector bundle. In particular, the possible dimensions of the automorphism group of a Leibnizian G-structure are characterized. (2) Galilean: Leibnizian structure endowed with an affine connection ∇\nabla (gauge field) which parallelizes Ω\Omega and \h. Fixed any vector field of observers Z (Ω(Z)=1\Omega (Z) = 1), an explicit Koszul--type formula which reconstruct bijectively all the possible ∇\nabla's from the gravitational G=∇ZZ{\cal G} = \nabla_Z Z and vorticity ω=rotZ/2\omega = rot Z/2 fields (plus eventually the torsion) is provided. (3) Newtonian: Galilean structure with \h flat and a field of observers Z which is inertial (its flow preserves the Leibnizian structure and ω=0\omega = 0). Classical concepts in Newtonian theory are revisited and discussed.Comment: Minor errata corrected, to appear in J. Math. Phys.; 22 pages including a table, Late

    Mode resolved density of atmospheric aerosol particles

    Get PDF
    In this study, we investigate the mode resolved density of ultrafine atmospheric particles measured in boreal forest environment. The method used here enables us to find the distinct density information for each mode in atmospheric fine particle population: the density values for nucleation, Aitken, and accumulation mode particles are presented. The experimental data was gained during 2 May 2005–19 May 2005 at the boreal forest measurement station "SMEAR II" in Hyytiälä, Southern Finland. The density values for accumulation mode varied from 1.1 to 2 g/cm<sup>3</sup> (average 1.5 g/cm<sup>3</sup>) and for Aitken mode from 0.4 to 2 g/cm<sup>3</sup> (average 0.97 g/cm<sup>3</sup>). As an overall trend during the two weeks campaign, the density value of Aitken mode was seen to gradually increase. With the present method, the time dependent behaviour of the particle density can be investigated in the time scale of 10 min. This allows us to follow the density evolution of the nucleation mode particles during the particle growth process following the nucleation burst. The density of nucleation mode particles decreased during the growth process. The density values for 15 nm particles were 1.2–1.5 g/cm<sup>3</sup> and for grown 30 nm particles 0.5–1 g/cm<sup>3</sup>. These values are consistent with the present knowledge that the condensing species are semi-volatile organics, emitted from the boreal forest

    Interaction between parental psychosis and early motor development and the risk of schizophrenia in a general population birth cohort.

    Get PDF
    BACKGROUND: Delayed motor development in infancy and family history of psychosis are both associated with increased risk of schizophrenia, but their interaction is largely unstudied. AIM: To investigate the association of the age of achieving motor milestones and parental psychosis and their interaction in respect to risk of schizophrenia. METHODS: We used data from the general population-based prospective Northern Finland Birth Cohort 1966 (n=10,283). Developmental information of the cohort members was gathered during regular visits to Finnish child welfare clinics. Several registers were used to determine the diagnosis of schizophrenia among the cohort members and psychosis among the parents. Altogether 152 (1.5%) individuals had schizophrenia by the age of 46 years, with 23 (15.1%) of them having a parent with psychosis. Cox regression analysis was used in analyses. RESULTS: Parental psychosis was associated (P<0.05) with later achievement of holding the head up, grabbing an object, and walking without support. In the parental psychosis group, the risk for schizophrenia was increased if holding the head up (hazard ratio [HR]: 2.46; degrees of freedom [df]=1; 95% confidence interval [95% CI]: 1.07-5.66) and touching the thumb with the index finger (HR: 1.84; df=1; 95% CI: 1.11-3.06) was later. In the group without parental psychosis, a delay in the following milestones increased the risk of schizophrenia: standing without support and walking without support. Parental psychosis had an interaction with delayed touching thumb with index finger (HR: 1.87; df=1; 95% CI: 1.08-3.25) when risk of schizophrenia was investigated. CONCLUSIONS: Parental psychosis was associated with achieving motor milestones later in infancy, particularly the milestones that appear early in a child's life. Parental psychosis and touching the thumb with the index finger had a significant interaction on risk of schizophrenia. Genetic risk for psychosis may interact with delayed development to raise future risk of schizophrenia, or delayed development may be a marker of other risk processes that interact with genetic liability to cause later schizophrenia.This study was supported by grants from the Brain and Behavior Research Foundation, Northern Finland Health Care Support Foundation, Sigrid Jusélius Foundation, and the Signe and Ane Gyllenberg Foundation, Finland. NFBC 1966 received financial support from the Academy of Finland (104781, 120315, 129269, 1114194, 24300796, 268336, 278286), Center of Excellence in Complex Disease Genetics and SALVE, Oulu University Hospital, Oulu, Finland, Biocenter of Oulu, Finland, University of Oulu, Finland (75617, 24002054, 2400692), Ministry of Social Affairs and Health (50459, 50691, 50842, 2749, 2465), NHLBI grant 5R01HL087679-02 through the STAMPEED program (1RL1MH083268-01), NIH/NIMH (5R01MH63706:02), ENGAGE project and grant agreement HEALTH-F4-2007-(201413), EU FP7 EurHEALTHAgeing (277849), EU FP7 EurHealth Epi-Migrant (279143), European Regional Development Fund 537/2010 (24300936) and the Medical Research Council, UK (G0500539, G0600705, G1002319, PrevMetSyn/SALVE).This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.eurpsy.2015.04.00

    Gelatine matrix with human thrombin decreases blood loss in adolescents undergoing posterior spinal fusion for idiopathic scoliosis A MULTICENTRE, RANDOMISED CLINICAL TRIAL

    Get PDF
    Aims In a multicentre, randomised study of adolescents undergoing posterior spinal fusion for idiopathic scoliosis, we investigated the effect of adding gelatine matrix with human thrombin to the standard surgical methods of controlling blood loss. Patients and Methods Patients in the intervention group (n = 30) were randomised to receive a minimum of two and a maximum of four units of gelatine matrix with thrombin in addition to conventional surgical methods of achieving haemostasis. Only conventional surgical methods were used in the control group (n = 30). We measured the intra-operative and total blood loss (intra-operative blood loss plus post-operative drain output). Results Each additional hour of operating time increased the intra-operative blood loss by 356.9 ml (p <0.001) and the total blood loss by 430.5 ml (p <0.001). Multiple linear regression analysis showed that the intervention significantly decreased the intra-operative (-171 ml, p = 0.025) and total blood loss (-177 ml, p = 0.027). The decrease in haemoglobin concentration from the day before the operation to the second post-operative day was significantly smaller in the intervention group (-6 g/I, p = 0.013) than in the control group. Conclusion The addition of gelatine matrix with human thrombin to conventional methods of achieving haemostasis reduces both the intra-operative blood loss and the decrease in haemoglobin concentration post-operatively in adolescents undergoing posterior spinal fusion for idiopathic scoliosis. Take home message: A randomised clinical trial showed that gelatine matrix with human thrombin decreases intra-operative blood loss by 30% when added to traditional surgical haemostatic methods in adolescents undergoing posterior spinal fusion for idiopathic scoliosis.Peer reviewe

    Future changes in Mekong River hydrology: impact of climate change and reservoir operation on discharge

    Get PDF
    The transboundary Mekong River is facing two ongoing changes that are expected to significantly impact its hydrology and the characteristics of its exceptional flood pulse. The rapid economic development of the riparian countries has led to massive plans for hydropower construction, and projected climate change is expected to alter the monsoon patterns and increase temperature in the basin. The aim of this study is to assess the cumulative impact of these factors on the hydrology of the Mekong within next 20–30 yr. We downscaled the output of five general circulation models (GCMs) that were found to perform well in the Mekong region. For the simulation of reservoir operation, we used an optimisation approach to estimate the operation of multiple reservoirs, including both existing and planned hydropower reservoirs. For the hydrological assessment, we used a distributed hydrological model, VMod, with a grid resolution of 5 km &amp;times; 5 km. In terms of climate change's impact on hydrology, we found a high variation in the discharge results depending on which of the GCMs is used as input. The simulated change in discharge at Kratie (Cambodia) between the baseline (1982–1992) and projected time period (2032–2042) ranges from &amp;minus;11% to &amp;plus;15% for the wet season and &amp;minus;10% to &amp;plus;13% for the dry season. Our analysis also shows that the changes in discharge due to planned reservoir operations are clearly larger than those simulated due to climate change: 25–160% higher dry season flows and 5–24% lower flood peaks in Kratie. The projected cumulative impacts follow rather closely the reservoir operation impacts, with an envelope around them induced by the different GCMs. Our results thus indicate that within the coming 20–30 yr, the operation of planned hydropower reservoirs is likely to have a larger impact on the Mekong hydrograph than the impacts of climate change, particularly during the dry season. On the other hand, climate change will increase the uncertainty of the estimated reservoir operation impacts: our results indicate that even the direction of the flow-related changes induced by climate change is partly unclear. Consequently, both dam planners and dam operators should pay closer attention to the cumulative impacts of climate change and reservoir operation on aquatic ecosystems, including the multibillion-dollar Mekong fisheries

    Can there be water scarcity with abundance of water? : Analyzing water stress during a severe drought in Finland

    Get PDF
    Severe droughts can affect water security even in countries with ample water resources. In addition, droughts are estimated to become more frequent in several regions due to changing climate. Drought affects many socio-economic sectors (e.g., agriculture, water supply, and industry), as it did in 2018 in Finland. Understanding the basin-wide picture is crucial in drought management planning. To identify vulnerable and water stressed areas in Finland, a water use-to-availability analysis was executed with a reference drought. Water stress was analyzed with the Water Depletion Index WDI. The analysis was executed using national water permits and databases. To represent a severe but realistic drought event, we modelled discharges and runoffs from the worst drought of the last century in Finland (1939–1942). The potential for performing similar analyses in data scarce contexts was also tested using estimates from global models as a screening tool. The results show that the South and Southwest of Finland would have problems with water availability during a severe drought. The most vulnerable areas would benefit from drought mitigation measures and management plans. These measures could be incorporated into the EU River Basin Management Plans

    CCN activation of fumed silica aerosols mixed with soluble pollutants

    Get PDF
    Particle-water interactions of completely soluble or insoluble particles are fairly well understood but less is known of aerosols consisting of mixtures of soluble and insoluble components. In this study, laboratory measurements were performed to investigate cloud condensation nuclei (CCN) activity of silica particles mixed with ammonium sulfate (a salt), sucrose (a sugar) and bovine serum albumin known as BSA (a protein). The agglomerated structure of the silica particles was investigated using measurements with a differential mobility analyser (DMA) and an aerosol particle mass analyser (APM). Based on these data, the particles were assumed to be compact agglomerates when studying their CCN activation capabilities. Furthermore, the critical super-saturations of particles consisting of pure and mixed soluble and insoluble compounds were explored using existing theoretical frameworks. These results showed that the CCN activation of single-component particles was in good agreement with Kohler- and adsorption theory based models when the agglomerated structure was accounted for. For mixed particles the CCN activation was governed by the soluble components, and the soluble fraction varied considerably with particle size for our wet-generated aerosols. Our results confirm the hypothesis that knowing the soluble fraction is the key parameter needed for describing the CCN activation of mixed aerosols, and highlight the importance of controlled coating techniques for acquiring a detailed understanding of the CCN activation of atmospheric insoluble particles mixed with soluble pollutants.Peer reviewe

    EC-Earth3-AerChem: A global climate model with interactive aerosols and atmospheric chemistry participating in CMIP6

    Get PDF
    This paper documents the global climate model EC-Earth3-AerChem, one of the members of the EC-Earth3 family of models participating in the Coupled Model Intercomparison Project Phase 6 (CMIP6). EC-Earth3-AerChem has interactive aerosols and atmospheric chemistry and contributes to the Aerosols and Chemistry Model Intercomparison Project (AerChemMIP). In this paper, we give an overview of the model, describe in detail how it differs from the other EC-Earth3 configurations, and outline the new features compared with the previously documented version of the model (EC-Earth 2.4). We explain how the model was tuned and spun up under preindustrial conditions and characterize the model's general performance on the basis of a selection of coupled simulations conducted for CMIP6. The net energy imbalance at the top of the atmosphere in the preindustrial control simulation is on average -0.09 W m-2 with a standard deviation due to interannual variability of 0.25 W m-2, showing no significant drift. The global surface air temperature in the simulation is on average 14.08 ∼ C with an interannual standard deviation of 0.17 ∼ C, exhibiting a small drift of 0.015 ± 0.005 ∼ C per century. The model's effective equilibrium climate sensitivity is estimated at 3.9 ∼ C, and its transient climate response is estimated at 2.1 ∼ C. The CMIP6 historical simulation displays spurious interdecadal variability in Northern Hemisphere temperatures, resulting in a large spread across ensemble members and a tendency to underestimate observed annual surface temperature anomalies from the early 20th century onwards. The observed warming of the Southern Hemisphere is well reproduced by the model. Compared with the ECMWF (European Centre for Medium-Range Weather Forecasts) Reanalysis version 5 (ERA5), the surface air temperature climatology for 1995-2014 has an average bias of -0.86 ± 0.05 ∼ C with a standard deviation across ensemble members of 0.35 ∼ C in the Northern Hemisphere and 1.29 ± 0.02 ∼ C with a corresponding standard deviation of 0.05 ∼ C in the Southern Hemisphere. The Southern Hemisphere warm bias is largely caused by errors in shortwave cloud radiative effects over the Southern Ocean, a deficiency of many climate models. Changes in the emissions of near-term climate forcers (NTCFs) have significant effects on the global climate from the second half of the 20th century onwards. For the SSP3-7.0 Shared Socioeconomic Pathway, the model gives a global warming at the end of the 21st century (2091-2100) of 4.9 ∼ C above the preindustrial mean. A 0.5 ∼ C stronger warming is obtained for the AerChemMIP scenario with reduced emissions of NTCFs. With concurrent reductions of future methane concentrations, the warming is projected to be reduced by 0.5 ∼ C
    • …
    corecore