80 research outputs found

    Plasmepsin inhibitors: design, synthesis, inhibitory studies and crystal structure analysis

    Get PDF
    Plasmepsin group of enzymes are key enzymes in the life cycle of malarial parasites. As inhibition of plasmepsins leads to the parasite's death, these enzymes can be utilized as potential drug targets. Although many drugs are available, it has been observed that Plasmodium falciparum, the species that causes most of the malarial infections and subsequent death, has developed resistance against most of the drugs. Based on the cleavage sites of hemglobin, the substrate for plasmepsins, we have designed two compounds (p-nitrobenzoyl-leucine-β -alanine and p-nitrobenzoyl-leucine-isonipecotic acid), synthesized them, solved their crystal structures and studied their inhibitory effect using experimental and theoretical (docking) methods. In this paper, we discuss the synthesis, crystal structures and inhibitory nature of these two compounds which have a potential to inhibit plasmepsins

    Effect of exercise therapy on lipid profile and oxidative stress indicators in patients with type 2 diabetes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Yoga has been shown to be a simple and economical therapeutic modality that may be considered as a beneficial adjuvant for type 2 diabetes mellitus. This study investigated the impact of Hatha yoga and conventional physical training (PT) exercise regimens on biochemical, oxidative stress indicators and oxidant status in patients with type 2 diabetes.</p> <p>Methods</p> <p>This prospective randomized study consisted of 77 type 2 diabetic patients in the Hatha yoga exercise group that were matched with a similar number of type 2 diabetic patients in the conventional PT exercise and control groups. Biochemical parameters such as fasting blood glucose (FBG), serum total cholesterol (TC), triglycerides, low-density lipoprotein (LDL), very low-density lipoproteins (VLDL) and high-density lipoprotein (HDL) were determined at baseline and at two consecutive three monthly intervals. The oxidative stress indicators (malondialdehyde – MDA, protein oxidation – POX, phospholipase A2 – PLA2 activity) and oxidative status [superoxide dismutase (SOD) and catalase activities] were measured.</p> <p>Results</p> <p>The concentrations of FBG in the Hatha yoga and conventional PT exercise groups after six months decreased by 29.48% and 27.43% respectively (P < 0.0001) and there was a significant reduction in serum TC in both groups (P < 0.0001). The concentrations of VLDL in the managed groups after six months differed significantly from baseline values (P = 0.036). Lipid peroxidation as indicated by MDA significantly decreased by 19.9% and 18.1% in the Hatha yoga and conventional PT exercise groups respectively (P < 0.0001); whilst the activity of SOD significantly increased by 24.08% and 20.18% respectively (P = 0.031). There was no significant difference in the baseline and 6 months activities of PLA2 and catalase after six months although the latter increased by 13.68% and 13.19% in the Hatha yoga and conventional PT exercise groups respectively (P = 0.144).</p> <p>Conclusion</p> <p>The study demonstrate the efficacy of Hatha yoga exercise on fasting blood glucose, lipid profile, oxidative stress markers and antioxidant status in patients with type 2 diabetes and suggest that Hatha yoga exercise and conventional PT exercise may have therapeutic preventative and protective effects on diabetes mellitus by decreasing oxidative stress and improving antioxidant status.</p> <p>Trial Registration</p> <p>Australian New Zealand Clinical Trials Registry (ANZCTR): ACTRN12608000217303</p

    Consensus Recommendation for Mouse Models of Ocular Hypertension to Study Aqueous Humor Outflow and Its Mechanisms.

    Get PDF
    Due to their similarities in anatomy, physiology, and pharmacology to humans, mice are a valuable model system to study the generation and mechanisms modulating conventional outflow resistance and thus intraocular pressure. In addition, mouse models are critical for understanding the complex nature of conventional outflow homeostasis and dysfunction that results in ocular hypertension. In this review, we describe a set of minimum acceptable standards for developing, characterizing, and utilizing mouse models of open-angle ocular hypertension. We expect that this set of standard practices will increase scientific rigor when using mouse models and will better enable researchers to replicate and build upon previous findings

    Prediction of diabetic retinopathy: role of oxidative stress and relevance of apoptotic biomarkers

    Full text link

    A note on Utricularia australis R.Br. Lentibulariaceae, in South India

    No full text
    Volume: 94Start Page: 439End Page: 44

    Properties of Aluminium Fly Ash Metal Matrix Composite

    No full text
    ABSTRACT: Metal matrix composites [MMC] are most important materials used for recent works in the industry and engineering applications. Fly ash particles are used in metal matrix composites, are low costand low density are available in large quantities of waste by product in power plants. The adding of fly ash with aluminium reinforcement by using stir casting process it can reduces the cost and density of aluminium material. Metal composite processes are improved mechanical properties like strength, hardness, low density and good wear resistance compared to other metals. In this study,aluminium clad and fly ash chemical analysis is studied before and after mixing and forming as particulate metal matrix composite and comparing the mechanical, physical properties of the MMC at varying % of fly ash addition. By comparison at various levels 15% of fly ash the MMC gives good mechanical and physical properties. This type of MMC is widely useful in light weight vehicles and aerospace application

    Rikliella kernii (Raymond) Raynal, a new record for Andhra Pradesh

    No full text
    Volume: 93Start Page: 323End Page: 32

    N- and C-Terminal Cooperation in Rotavirus Enterotoxin: Novel Mechanism of Modulation of the Properties of a Multifunctional Protein by a Structurally and Functionally Overlapping Conformational Domain

    No full text
    Rotavirus NSP4 is a multifunctional endoplasmic reticulum (ER)-resident nonstructural protein with the N terminus anchored in the ER and about 131 amino acids (aa) of the C-terminal tail (CT) oriented in the cytoplasm. Previous studies showed a peptide spanning aa 114 to 135 to induce diarrhea in newborn mouse pups with the 50% diarrheal dose approximately 100-fold higher than that for the full-length protein, suggesting a role for other regions in the protein in potentiating its diarrhea-inducing ability. In this report, employing a large number of methods and deletion and amino acid substitution mutants, we provide evidence for the cooperation between the extreme C terminus and a putative amphipathic α-helix located between aa 73 and 85 (AAH(73-85)) at the N terminus of ΔN72, a mutant that lacked the N-terminal 72 aa of nonstructural protein 4 (NSP4) from Hg18 and SA11. Cooperation between the two termini appears to generate a unique conformational state, specifically recognized by thioflavin T, that promoted efficient multimerization of the oligomer into high-molecular-mass soluble complexes and dramatically enhanced resistance against trypsin digestion, enterotoxin activity of the diarrhea-inducing region (DIR), and double-layered particle-binding activity of the protein. Mutations in either the C terminus, AAH(73-85), or the DIR resulted in severely compromised biological functions, suggesting that the properties of NSP4 are subject to modulation by a single and/or overlapping highly sensitive conformational domain that appears to encompass the entire CT. Our results provide for the first time, in the absence of a three-dimensional structure, a unique conformation-dependent mechanism for understanding the NSP4-mediated pleiotropic properties including virus virulence and morphogenesis

    Purification, crystallization and preliminary X-ray diffraction analysis of the catalytic domain of adenylyl cyclase Rv1625c from Mycobacterium tuberculosis

    No full text
    The Rv1625c gene product is an adenylyl cyclase identified in the genome of Mycobacterium tuberculosis strain H37Rv. It shows sequence similarity to the mammalian nucleotide cyclases and functions as a homodimer, with two substrate-binding sites at the dimer interface. A mutant form of the catalytic domain of this enzyme, K296E/F363R/D365C (KFD→ERC), was overexpressed in Escherichia coli cells in a soluble form. Crystals were obtained using the hanging-drop vapour-diffusion method with PEG 8000 as a precipitant. The protein crystallized in space group P41, with unit-cell parameters a=b=71.25, c=44.51 Å. X-ray diffraction data were collected to a resolution of 3.4 Å and the structure has been solved by the molecular-replacement method using a previously built theoretical model of the protein as the search molecule
    corecore