151 research outputs found

    Spectral modeling of type II supernovae. I. Dilution factors

    Full text link
    We present substantial extensions to the Monte Carlo radiative transfer code TARDIS to perform spectral synthesis for type II supernovae. By incorporating a non-LTE ionization and excitation treatment for hydrogen, a full account of free-free and bound-free processes, a self-consistent determination of the thermal state and by improving the handling of relativistic effects, the improved code version includes the necessary physics to perform spectral synthesis for type II supernovae to high precision as required for the reliable inference of supernova properties. We demonstrate the capabilities of the extended version of TARDIS by calculating synthetic spectra for the prototypical type II supernova SN1999em and by deriving a new and independent set of dilution factors for the expanding photosphere method. We have investigated in detail the dependence of the dilution factors on photospheric properties and, for the first time, on changes in metallicity. We also compare our results with two previously published sets of dilution factors by Eastman et al. (1996) and by Dessart & Hillier (2005), and discuss the potential sources of the discrepancies between studies.Comment: 16 pages, 12 figures, 2 tables, accepted for publication in A&

    Spectral sequences of Type Ia supernovae. I. Connecting normal and sub-luminous SN Ia and the presence of unburned carbon

    Get PDF
    Type Ia supernovae are generally agreed to arise from thermonuclear explosions of carbon-oxygen white dwarfs. The actual path to explosion, however, remains elusive, with numerous plausible parent systems and explosion mechanisms suggested. Observationally, type Ia supernovae have multiple subclasses, distinguished by their lightcurves and spectra. This raises the question whether these reflect that multiple mechanisms occur in nature, or instead that explosions have a large but continuous range of physical properties. We revisit the idea that normal and 91bg-like supernovae can be understood as part of a spectral sequence, in which changes in temperature dominate. Specifically, we find that a single ejecta structure is sufficient to provide reasonable fits of both the normal type Ia supernova SN~2011fe and the 91bg-like SN~2005bl, provided that the luminosity and thus temperature of the ejecta are adjusted appropriately. This suggests that the outer layers of the ejecta are similar, thus providing some support of a common explosion mechanism. Our spectral sequence also helps to shed light on the conditions under which carbon can be detected in pre-maximum SN~Ia spectra -- we find that emission from iron can "fill in" the carbon trough in cool SN~Ia. This may indicate that the outer layers of the ejecta of events in which carbon is detected are relatively metal poor compared to events where carbon is not detected

    Limits on stable iron in Type \,Ia supernovae from NIR spectroscopy

    Full text link
    We obtained optical and near-infrared spectra of Type \,Ia supernovae (SNe \,Ia) at epochs ranging from 224 to 496 days after the explosion. The spectra show emission lines from forbidden transitions of singly ionised iron and cobalt atoms. We used non-local thermodynamic equilibrium (NLTE) modelling of the first and second ionisation stages of iron, nickel, and cobalt to fit the spectra using a sampling algorithm allowing us to probe a broad parameter space. We derive velocity shifts, line widths, and abundance ratios for iron and cobalt. The measured line widths and velocity shifts of the singly ionised ions suggest a shared emitting region. Our data are fully compatible with radioactive 56^{56}Ni decay as the origin for cobalt and iron. We compare the measured abundance ratios of iron and cobalt to theoretical predictions of various SN \,Ia explosion models. These models include, in addition to 56^{56}Ni, different amounts of 57^{57}Ni and stable 54,56^{54,56}Fe. We can exclude models that produced only 54,56^{54,56}Fe or only 57^{57}Ni in addition to 56^{56}Ni. If we consider a model that has 56^{56}Ni, 57^{57}Ni, and 54,56^{54,56}Fe then our data imply that these ratios are 54,56^{54,56}Fe / 56^{56}Ni =0.272±0.086=0.272\pm0.086 and 57^{57}Ni / 56^{56}Ni =0.032±0.011=0.032\pm0.011.Comment: 10 pages, 7 figures, Accepted for publication in A&

    Nebular spectroscopy of SN 2014J: Detection of stable nickel in near infrared spectra

    Full text link
    We present near infrared (NIR) spectroscopy of the nearby supernova 2014J obtained ∼\sim450 d after explosion. We detect the [Ni II] 1.939 μ\mum line in the spectra indicating the presence of stable 58^{58}Ni in the ejecta. The stable nickel is not centrally concentrated but rather distributed as the iron. The spectra are dominated by forbidden [Fe II] and [Co II] lines. We use lines, in the NIR spectra, arising from the same upper energy levels to place constraints on the extinction from host galaxy dust. We find that that our data are in agreement with the high AVA_V and low RVR_V found in earlier studies from data near maximum light. Using a 56^{56}Ni mass prior from near maximum light γ\gamma-ray observations, we find ∼\sim0.05 M⊙_\odot of stable nickel to be present in the ejecta. We find that the iron group features are redshifted from the host galaxy rest frame by ∼\sim600 km s−1^{-1}.Comment: 6 pages, 4 figures, submitted to A&

    Modelling the early time behaviour of type Ia supernovae: effects of the 56Ni distribution

    Get PDF
    Recent studies have demonstrated the diversity in type Ia supernovae (SNe Ia) at early times and highlighted a need for a better understanding of the explosion physics as manifested by observations soon after explosion. To this end, we present a Monte Carlo code designed to model the light curves of radioactively driven, hydrogen-free transients from explosion to approximately maximum light. In this initial study, we have used a parametrised description of the ejecta in SNe Ia, and performed a parameter study of the effects of the 56^{56}Ni distribution on the observed colours and light curves for a fixed 56^{56}Ni mass of 0.6 M⊙M_\odot. For a given density profile, we find that models with 56^{56}Ni extending throughout the entirety of the ejecta are typically brighter and bluer shortly after explosion. Additionally, the shape of the density profile itself also plays an important role in determining the shape, rise time, and colours of observed light curves. We find that the multi-band light curves of at least one SNe Ia (SN 2009ig) are inconsistent with less extended 56^{56}Ni distributions, but show good agreement with models that incorporate 56^{56}Ni throughout the entire ejecta. We further demonstrate that comparisons with full UVOIRUVOIR colour light curves are powerful tools in discriminating various 56^{56}Ni distributions, and hence explosion models.Comment: 14 pages, 8 figures, 2 tables. Minor changes in notation to match published version in Astronomy & Astrophysic

    KMOS view of the Galactic Centre - II. Metallicity distribution of late-type stars

    Get PDF
    Knowing the metallicity distribution of stars in the Galactic Centre has important implications for the formation history of the Milky Way nuclear star cluster. However, this distribution is not well known, and is currently based on a small sample of fewer than 100 stars. We obtained near-infrared K-band spectra of more than 700 late-type stars in the central 4 pc^2 of the Milky Way nuclear star cluster with the integral-field spectrograph KMOS (VLT). We analyse the medium-resolution spectra using a full-spectral fitting method employing the G\"ottingen Spectral library of synthetic PHOENIX spectra. The derived stellar metallicities range from metal-rich [M/H]>+0.3 dex to metal-poor [M/H]<-1.0 dex, with a fraction of 5.2(^{+6.0}+{-3.1}) per cent metal-poor ([M/H]<-0.5 dex) stars. The metal-poor stars are distributed over the entire observed field. The origin of metal-poor stars remains unclear. They could originate from infalling globular clusters. For the metal-rich stellar population ([M/H]>0 dex) a globular cluster origin can be ruled out. As there is only a very low fraction of metal-poor stars in the central 4 pc^2 of the Galactic Centre, we believe that our data can discard a scenario in which the Milky Way nuclear star cluster is purely formed from infalling globular clusters.Comment: 18 pages, 9 Figures, accepted for publication in MNRA

    Modelling the early time behaviour of type Ia supernovae: effects of the Ni-56 distribution

    Get PDF
    Recent studies have demonstrated the diversity in type Ia supernovae (SNe Ia) at early times and highlighted a need for a better understanding of the explosion physics as manifested by observations soon after explosion. To this end, we present a Monte Carlo code designed to model the light curves of radioactively driven, hydrogen-free transients from explosion to approximately maximum light. In this initial study, we have used a parametrised description of the ejecta in SNe Ia, and performed a parameter study of the effects of the Ni-56 distribution on the observed colours and light curves for a fixed Ni-56 mass of 0.6 M-circle dot. For a given density profile, we find that models with Ni-56 extending throughout the entirety of the ejecta are typically brighter and bluer shortly after explosion. Additionally, the shape of the density profile itself also plays an important role in determining the shape, rise time, and colours of observed light curves. We find that the multi-band light curves of at least one SNe Ia (SN 2009ig) are inconsistent with less extended Ni-56 distributions, but show good agreement with models that incorporate Ni-56 throughout the entire ejecta. We further demonstrate that comparisons with full UVOIR colour light curves are powerful tools in discriminating various Ni-56 distributions, and hence explosion models

    Searching for a Hypervelocity White Dwarf Companion: A Proper Motion Survey of SN 1006

    Full text link
    Type Ia Supernovae (SNe Ia) are securely understood to come from the thermonuclear explosion of a white dwarf as a result of binary interaction, but the nature of that binary interaction and the secondary object is uncertain. Recently, a double white dwarf model known as the dynamically driven double-degenerate double-detonation (D6) model has become a promising explanation for these events. One realization of this scenario predicts that the companion may survive the explosion and reside within the remnant as a fast moving (Vpeculiar>1000V_{peculiar} >1000 km s−1^{-1}), overluminous (L>0.1L⊙L > 0.1 L_\odot) white dwarf. Recently, three objects which appear to have these unusual properties have been discovered in the Gaia survey. We obtained photometric observations of the SN Ia remnant SN 1006 with the Dark Energy Camera over four years to attempt to discover a similar star. We present a deep, high precision astrometric proper motion survey of the interior stellar population of the remnant. We rule out the existence of a high proper motion object consistent with our tested realization of the D6 scenario (Vtransverse>600V_{transverse} > 600 km s−1^{-1} with mr0.0176L⊙m_r 0.0176 L_\odot). We conclude that such a star does not exist within the remnant, or is hidden from detection by either strong localized dust or the unlikely possibility of ejection from the binary system near parallel to the line of sight.Comment: 15 pages, 10 figure
    • …
    corecore