858 research outputs found

    An interoperable and self-adaptive approach for SLA-based service virtualization in heterogeneous Cloud environments

    Get PDF
    Cloud computing is a newly emerged computing infrastructure that builds on the latest achievements of diverse research areas, such as Grid computing, Service-oriented computing, business process management and virtualization. An important characteristic of Cloud-based services is the provision of non-functional guarantees in the form of Service Level Agreements (SLAs), such as guarantees on execution time or price. However, due to system malfunctions, changing workload conditions, hard- and software failures, established SLAs can be violated. In order to avoid costly SLA violations, flexible and adaptive SLA attainment strategies are needed. In this paper we present a self-manageable architecture for SLA-based service virtualization that provides a way to ease interoperable service executions in a diverse, heterogeneous, distributed and virtualized world of services. We demonstrate in this paper that the combination of negotiation, brokering and deployment using SLA-aware extensions and autonomic computing principles are required for achieving reliable and efficient service operation in distributed environments. © 2012 Elsevier B.V. All rights reserved

    An SLA-based resource virtualization approach for on-demand service provision

    Get PDF
    Cloud computing is a newly emerged research infrastructure that builds on the latest achievements of diverse research areas, such as Grid computing, Service-oriented computing, business processes and virtualization. In this paper we present an architecture for SLA-based resource virtualization that provides an extensive solution for executing user applications in Clouds. This work represents the first attempt to combine SLA-based resource negotiations with virtualized resources in terms of on-demand service provision resulting in a holistic virtualization approach. The architecture description focuses on three topics: agreement negotiation, service brokering and deployment using virtualization. The contribution is also demonstrated with a real-world case study

    Percolation transition of hydration water at hydrophilic surfaces

    Full text link
    An analysis of water clustering is used to study the quasi-2D percolation transition of water adsorbed at planar hydrophilic surfaces. Above the critical temperature of the layering transition (quasi-2D liquid-vapor phase transition of adsorbed molecules) a percolation transition occurs at some threshold surface coverage, which increases with increasing temperature. The location of the percolation line is consistent with the existence of a percolation transition at the critical point. The percolation threshold at a planar surface is weakly sensitive to the size of the system when its lateral dimension increases from 80 to 150 A. The size distribution of the largest water cluster shows a specific two-peaks structure in a wide range of surface coverage : the lower- and higher-size peaks represent contributions from non-spanning and spanning clusters, respectively. The ratio of the average sizes of spanning and non-spanning largest clusters is about 1.8 for all studied planes. The two-peak structure becomes more pronounced with decreasing size of the planar surface and strongly enhances at spherical surfaces.Comment: 17 pages, 11 figure

    Facilitating self-adaptable inter-cloud management

    Get PDF
    Cloud Computing infrastructures have been developed as individual islands, and mostly proprietary solutions so far. However, as more and more infrastructure providers apply the technology, users face the inevitable question of using multiple infrastructures in parallel. Federated cloud management systems offer a simplified use of these infrastructures by hiding their proprietary solutions. As the infrastructure becomes more complex underneath these systems, the situations (like system failures, handling of load peaks and slopes) that users cannot easily handle, occur more and more frequently. Therefore, federations need to manage these situations autonomously without user interactions. This paper introduces a methodology to autonomously operate cloud federations by controlling their behavior with the help of knowledge management systems. Such systems do not only suggest reactive actions to comply with established Service Level Agreements (SLA) between provider and consumer, but they also find a balance between the fulfillment of established SLAs and resource consumption. The paper adopts rule-based techniques as its knowledge management solution and provides an extensible rule set for federated clouds built on top of multiple infrastructures. © 2012 IEEE

    LAYSI: A layered approach for SLA-violation propagation in self-manageable cloud infrastructures

    Get PDF
    Cloud computing represents a promising comput ing paradigm where computing resources have to be allocated to software for their execution. Self-manageable Cloud in frastructures are required to achieve that level of flexibility on one hand, and to comply to users' requirements speci fied by means of Service Level Agreements (SLAs) on the other. Such infrastructures should automatically respond to changing component, workload, and environmental conditions minimizing user interactions with the system and preventing violations of agreed SLAs. However, identification of sources responsible for the possible SLA violation and the decision about the reactive actions necessary to prevent SLA violation is far from trivial. First, in this paper we present a novel approach for mapping low-level resource metrics to SLA parameters necessary for the identification of failure sources. Second, we devise a layered Cloud architecture for the bottom-up propagation of failures to the layer, which can react to sensed SLA violation threats. Moreover, we present a communication model for the propagation of SLA violation threats to the appropriate layer of the Cloud infrastructure, which includes negotiators, brokers, and automatic service deployer. © 2010 IEEE

    Scaling relation for determining the critical threshold for continuum percolation of overlapping discs of two sizes

    Full text link
    We study continuum percolation of overlapping circular discs of two sizes. We propose a phenomenological scaling equation for the increase in the effective size of the larger discs due to the presence of the smaller discs. The critical percolation threshold as a function of the ratio of sizes of discs, for different values of the relative areal densities of two discs, can be described in terms of a scaling function of only one variable. The recent accurate Monte Carlo estimates of critical threshold by Quintanilla and Ziff [Phys. Rev. E, 76 051115 (2007)] are in very good agreement with the proposed scaling relation.Comment: 4 pages, 3 figure

    Quasi-static cracks and minimal energy surfaces

    Get PDF
    We compare the roughness of minimal energy(ME) surfaces and scalar ``quasi-static'' fracture surfaces(SQF). Two dimensional ME and SQF surfaces have the same roughness scaling, w sim L^zeta (L is system size) with zeta = 2/3. The 3-d ME and SQF results at strong disorder are consistent with the random-bond Ising exponent zeta (d >= 3) approx 0.21(5-d) (d is bulk dimension). However 3-d SQF surfaces are rougher than ME ones due to a larger prefactor. ME surfaces undergo a ``weakly rough'' to ``algebraically rough'' transition in 3-d, suggesting a similar behavior in fracture.Comment: 7 pages, aps.sty-latex, 7 figure
    • …
    corecore