5,156 research outputs found
Why and How to Benchmark XML Databases
Benchmarks belong to the very standard repertory of tools deployed in database development. Assessing the capabilities of a system, analyzing actual and potential bottlenecks, and, naturally, comparing the pros and cons of different systems architectures have become indispensable tasks as databases management systems grow in complexity and capacity. In the course of the development of XML databases the need for a benchmark framework has become more and more evident: a great many different ways to store XML data have been suggested in the past, each with its genuine advantages, disadvantages and consequences that propagate through the layers of a complex database system and need to be carefully considered. The different storage schemes render the query characteristics of the data variably different. However, no conclusive methodology for assessing these differences is available to date.
In this paper, we outline desiderata for a benchmark for XML databases drawing from our own experience of developing an XML repository, involvement in the definition of the standard query language, and experience with standard benchmarks for relational databases
Why and How to Benchmark XML Databases
Benchmarks belong to the very standard repertory of tools deployed in database development. Assessing the capabilities of a system, analyzing actual and potential bottlenecks, and, naturally, comparing the pros and cons of different systems architectures have become indispensable tasks as databases management systems grow in complexity and capacity. In the course of the development of XML databases the need for a benchmark framework has become more and more evident: a great many different ways to store XML data have been suggested in the past, each with its genuine advantages, disadvantages and consequences that propagate through the layers of a complex database system and need to be carefully considered. The different storage schemes render the query characteristics of the data variably different. However, no conclusive methodology for assessing these differences is available to date.
In this paper, we outline desiderata for a benchmark for XML databases drawing from our own experience of developing an XML repository, involvement in the definition of the standard query language, and experience with standard benchmarks for relational databases
Algebraic properties of Gardner's deformations for integrable systems
An algebraic definition of Gardner's deformations for completely integrable
bi-Hamiltonian evolutionary systems is formulated. The proposed approach
extends the class of deformable equations and yields new integrable
evolutionary and hyperbolic Liouville-type systems. An exactly solvable
two-component extension of the Liouville equation is found.Comment: Proc. conf. "Nonlinear Physics: Theory and Experiment IV" (Gallipoli,
2006); Theor. Math. Phys. (2007) 151:3/152:1-2, 16p. (to appear
Particles as probes for complex plasmas in front of biased surfaces
An interesting aspect in the research of complex (dusty) plasmas is the
experimental study of the interaction of micro-particles with the surrounding
plasma for diagnostic purposes. Local electric fields can be determined from
the behaviour of particles in the plasma, e.g. particles may serve as
electrostatic probes. Since in many cases of applications in plasma technology
it is of great interest to describe the electric field conditions in front of
floating or biased surfaces, the confinement and behaviour of test particles is
studied in front of floating walls inserted into a plasma as well as in front
of additionally biased surfaces. For the latter case, the behaviour of
particles in front of an adaptive electrode, which allows for an efficient
confinement and manipulation of the grains, has been experimentally studied in
dependence on the discharge parameters and on different bias conditions of the
electrode. The effect of the partially biased surface (dc, rf) on the charged
micro-particles has been investigated by particle falling experiments. In
addition to the experiments we also investigate the particle behaviour
numerically by molecular dynamics, in combination with a fluid and
particle-in-cell description of the plasma.Comment: 39 pages, 16 figures, submitted to New J. Phy
The Gravitino-Stau Scenario after Catalyzed BBN
We consider the impact of Catalyzed Big Bang Nucleosynthesis on theories with
a gravitino LSP and a charged slepton NLSP. In models where the gravitino to
gaugino mass ratio is bounded from below, such as gaugino-mediated SUSY
breaking, we derive a lower bound on the gaugino mass parameter m_1/2. As a
concrete example, we determine the parameter space of gaugino mediation that is
compatible with all cosmological constraints.Comment: 1+14 pages, 6 figures; v2: minor clarifications, 1 reference added,
matches version to appear in JCA
Relations among neutrino observables in the light of a large theta_13 angle
The recent T2K and MINOS indications for a "large" theta_13 neutrino mixing
angle can be accommodated in principle by an infinite number of Yukawa flavour
structures in the seesaw model. Without considering any explicit flavour
symmetry, there is an instructive exercise one can do: to determine the
simplest flavour structures which can account for the data with a minimum
number of parameters, simply assuming these parameters to be uncorrelated. This
approach points towards a limited number of simple structures which show the
minimum complexity a neutrino mass model must generally involve to account for
the data. These basic structures essentially lead to only 4 relations between
the neutrino observables. We emphasize that 2 of these relations, |sin
theta_13|=(tan theta_23/cos delta)*(1-tan theta_12)/(1+tan theta_12) and |sin
theta_13| = sin theta_12 R^1/4, with R= Delta m^2_21/Delta m^2_32, have several
distinctive properties. First, they hold not only with a minimum number of
parameters, but also for complete classes of more general models. Second, any
value of theta_13 within the T2K and MINOS ranges can be obtained from these
relations by taking into account small perturbations. Third, they turn out to
be the pivot relations of models with approximate conservation of lepton
number, which allow the seesaw interactions to induce observable flavour
violating processes, such as mu -> e gamma and tau -> mu gamma. Finally, in
specific cases of this kind, these structures have the rather unique property
to allow a full reconstruction of the seesaw Lagrangian from low energy data.Comment: 13 pages, 3 figure
Acetylcholinesterase Inhibitors (AChEI's) for the treatment of visual hallucinations in schizophrenia: a case report
Background: Visual hallucinations are commonly seen in various neurological and psychiatric disorders including schizophrenia. Current models of visual processing and studies in diseases including Parkinsons Disease and Lewy Body Dementia propose that Acetylcholine (Ach) plays a pivotal role in our ability to accurately interpret visual stimuli. Depletion of Ach is thought to be associated with visual hallucination generation. AchEI’s have been used in the targeted treatment of visual hallucinations in dementia and Parkinson’s Disease patients. In Schizophrenia, it is thought that a similar Ach depletion leads to visual hallucinations and may provide a target for drug treatment Case Presentation: We present a case of a patient with Schizophrenia presenting with treatment resistant and significantly distressing visual hallucinations. After optimising treatment for schizophrenia we used Rivastigmine, an AchEI, as an adjunct to treat her symptoms successfully. Conclusions: This case is the first to illustrate this novel use of an AchEI in the targeted treatment of visual hallucinations in a patient with Schizophrenia. Targeted therapy of this kind can be considered in challenging cases although more evidence is required in this field. Background Visual hallucinations occur in a variety of neurologica
Fitting Neutrino Physics with a U(1)_R Lepton Number
We study neutrino physics in the context of a supersymmetric model where a
continuous R-symmetry is identified with the total Lepton Number and one
sneutrino can thus play the role of the down type Higgs. We show that
R-breaking effects communicated to the visible sector by Anomaly Mediation can
reproduce neutrino masses and mixing solely via radiative contributions,
without requiring any additional degree of freedom. In particular, a relatively
large reactor angle (as recently observed by the Daya Bay collaboration) can be
accommodated in ample regions of the parameter space. On the contrary, if the
R-breaking is communicated to the visible sector by gravitational effects at
the Planck scale, additional particles are necessary to accommodate neutrino
data.Comment: 19 pages, 3 figures; v2: references added, constraints updated,
overall conclusions unchange
Detectors for Energy-Resolved Fast Neutron Imaging
Two detectors for energy-resolved fast-neutron imaging in pulsed broad-energy
neutron beams are presented. The first one is a neutron-counting detector based
on a solid neutron converter coupled to a gaseous electron multiplier (GEM).
The second is an integrating imaging technique, based on a scintillator for
neutron conversion and an optical imaging system with fast framing capability
- …